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Chapter 1
Introduction

Local contents
1.1 Class meet time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Syllabus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Instructor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Textbook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

This course part of my Masters degree in Applied Mathematics at California State University,
Fullerton.

1.1 Class meet time

Figure 1.1: class schedule time

3



chapter 1. introduction 4

1.2 Syllabus
 

Math 502AB – Probability and Statistics I & II   

Fall 2007 - Section 1, MH 390, MW 5:30-6:45 and 7:00-8:15 

 
Instructor:      Mortaza (Mori) Jamshidian, Ph.D.     Office: MH 180   Phone: 714-278-2398 
 
Office Hours:   Mon.  2:20 – 3:30, Wed. 4:30-5:25 p.m., or by appointment  
 
Homepage: http://math.fullerton.edu/mori        E-mail:   mori@fullerton.edu
 
Text: Mathematical Statistics and Data Analysis by John Rice, Third Edition, Thompson/Brooks/Cole, 
2007. 
 
Software: We will use R, Matlab, and SAS for the projects and homework assignments. Instructions 
for use of these packages will be given, as necessary. R is a free software environment for statistical 
computing and graphics. It compiles and runs on a wide variety of UNIX platforms, Windows 
and MacOS. To download R, please choose your preferred CRAN mirror. SAS and Matlab are 
available to students in the Mathematics Department Computing Laboratory in MH 452. Please 
download and install R on your computers as soon as possible. 
  
Your e-mail address wanted: You are required to fill out the “Student Information Form” (click here) 
and submit it to mori@fullerton.edu no later than Saturday, August 25. Do not save the pdf file and 
attach to an e-mail. The file that I need is an XML file. You need to use the submit button on the form 
and follow the instructions.  I will send various communiqué, take home quizzes, and last minute 
announcements about our class through e-mail. Please provide an e-mail address that you check 
frequently. I will send a “test e-mail” on Sunday August 26 to everyone. If you do not receive this test e-
mail, please see me on Monday to resolve any problems there may be. Note: Any credits that you lose 
due to not establishing your e-mail connection with me on time will be your responsibility. 
 
Course Description: This course has two parts. In the first part we learn fundamentals of probability 
theory, including random variables, joint and conditional distributions, expected values, major probability 
limit theorems, and some well-known distributions. The objective in the second part is to utilize the 
probability theory learnt in the first part mainly for statistical inference. We will learn topics including 
survey sampling methods, parameter estimation specially maximum likelihood and method of moments, 
Bayesian estimation, properties of estimators, test of hypothesis and goodness of fit, exploratory data 
analysis, analysis of variance, regression analysis, and analysis of categorical data. 

Course requirements and Grading Policy: Homework/projects (30%) will be assigned and graded. I 
often give a quiz related to the homework problems, and use the quiz grade instead of the homework 
grade. Two midterm exams (40%) and a final exam (30%) will be given. Portions of the exams may be 
take-home. For in-class exams you will be allowed to bring in one page of information during each 
midterm exam and two pages of information during the final exam. Letter grades will be assigned 
according to the distribution of the overall grades. Plus-minus grading will be used.  

The exam dates are as follows: 
Figure 1.2: page 1
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Exam I Exam II Final Exam 

Wednesday, Oct. 3 Wednesday, Nov. 7 Monday, Dec. 10, 5:00-6:50 p.m. 

Wednesday, Dec. 12, 7:30-9:20 p.m. 

Late homework/projects will not be accepted. Make-up exams will be given only in extreme instances and 
only with advance permission of the instructor. Any student who does not take an exam at the scheduled 
time without prior consent of the instructor will receive a grade of zero on that exam. If any student feels 
that a sudden illness is sufficiently extreme to warrant a make-up exam, the instructor must be provided 
with documentation prepared by an appropriate authority. 
 
Academic Integrity: Students who violate university standards of academic integrity are subject to 
disciplinary sanctions, including failure in the course and suspension from the university. Since 
dishonesty in any form harms the individual, other students and the university, policies on academic 
integrity are strictly enforced. I expect that you will familiarize yourself with the academic integrity 
guidelines found in the current student handbook (see 
http://www.fullerton.edu/deanofstudents/judicial/policies.htm).  

Examples of actions that constitute academic dishonesty include, but are not limited to: 

1. Unacceptable examination behavior – communicating with fellow students, copying material from 
another student’s exam or allowing another student to copy from an exam, possessing or using 
unauthorized materials, or any behavior that defeats the intent of an exam. 

2. Plagiarism – taking the work of another and offering it as one’s own without giving credit to that 
source, whether that material is paraphrased or copied in verbatim or near-verbatim form. 

3. Unauthorized collaboration on a project, homework or other assignment. 
4. Documentary falsification including forgery, altering of campus documents or records, tampering 

with grading procedures, fabricating lab assignments, or altering medical excuses. 
  
Emergency Evacuation: In the event of an emergency such as earthquake or fire: 

•        Take all your personal belongings and leave the classroom. Use the stairways located at the 
east, west, or center of the building. 

•        Do not use the elevator.  They may not be working once the alarm sounds. 
•        Go to the lawn area towards Nutwood Avenue.  Stay with class members for further instruction. 
•        For additional information on exits, fire alarms and telephones, Building Evacuation Maps are 

located near each elevator.   
•        Anyone who may have difficulty evacuating the building, please see the instructor. 

 
Some Important dates: 
 
September 4 (Tuesday): Last day for students to drop without a grade of “W”.  Students drop using 
Titan.  
September 28 (Friday): Last day the Math Department will be flexible on the approval of late 
withdrawal requests.  Beginning Monday, October 1, students must have a serious and compelling 
reason for withdrawing (e.g. medical reason) and must provide supporting documentation for their 
reason.  Please encourage students who are considering withdrawing to do so BY September 28. 
 
November 9 (Friday): Last day to withdraw with a truly serious and compelling reason that is 
beyond the student’s control.  Students must document their reason. 

Figure 1.3: page 2
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1.3 Instructor
Instructor and course official web site is http://math.fullerton.edu/mori/

Professor Mortaza Jamshidian
Department of Mathematics
800 N. State College Blvd.
Fullerton, CA 92834
E-mail: mori@fullerton.edu

Phone: 714-278-2398 (office)
714-278-3631 (Dept.)
Fax:714-278-1431

1.4 Textbook

Figure 1.4: Book

Amazon web page for the textbook is here

http://math.fullerton.edu/mori/
http://www.amazon.com/Mathematical-Statistics-Analysis-Duxbury-Advanced/dp/0534399428
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1.4.1 Table of content of textbook

Figure 1.5: page 1
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Figure 1.6: page 2
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Figure 1.7: page 3
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Figure 1.8: page 4
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Figure 1.9: page 5
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Figure 1.10: page 6
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Figure 1.11: page 7
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Chapter 2
Projects

Local contents
2.1 List of Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Project 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Project 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.1 List of Projects
1. Generating pseudo random numbers from a given distribution.

2. Accept/Reject Algorithm.

3. The Bivariate Normal Distribution, Due Wed. October 25.

4. Maximum likelihood and Bootstrap.

15
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2.2 Figures

Figure 2.1: A bivariate distribution with uniform marginals
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Figure 2.3: type I and type II errors for the binomial(5, θ) example

2.3 Project 1

2.3.1 Introduction
Project handout given to us by Professor Jamshidian. The following describes the project.
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Project 1: Generating pseudo random numbers from various distributions

Instructions: Submit a hard copy of your project, including the code. Send a softcopy
of your code by e-mail with subject line “code for Project 1 – Your name”. Please choose
filenames that clearly indicate which program belongs to which (part of a) problem [e.g.
“prob3bc.R” for problem 3 section c]. I will accept code in Matlab, R, or Mathematica.
However, I will provide help only to those that use R, just to encourage you to use R. In
fact the project is written with references to the R language, but you can use equivalent
commends in Matlab or Mathematica.

1. [10 points] The distribution function for the exponential distribution with parameter
λ is given by

F (x) =

{
1− e−λx x ≥ 0
0 Otherwise.

a. Write an R program that uses F−1 and the uniform random number generator in
R (runif) to generate n numbers from the exponential distribution with λ. Use
set.seed(your birthday MMDDYY).

b. Generate n = 10000 values from the exponential random variable with parameter λ = 2,
using your program (don’t give me the numbers generated!). Use the hist command
in R to plot the density histogram of the relative frequencies for the generated data.
Overlay this histogram by the graph of the density of the exponential random variable
with parameter λ = 2. The commands dexp and lines, or curves can be used. Select
an appropriate number of bins for your histogram. Briefly comment on the relationship
between the histogram and the density curve.

2. [20 points] Let φ0(x) and φ1(x) denote the density functions for two normal random
variables with σ = 1, and respective means 0 and 3. The density for a mixture distribution
of these is defined as

f(x) = γφ0(x) + (1− γ)φ1(x) −∞ < x <∞.

for a given admixture parameter 0 < γ < 1.

a. Write an R program, using the normal random generator rnorm and the uniform random
number generator runif, to generate n random numbers from this mixture. The inputs
to your program should be n, and γ. Generate two sets of 10,000 data points; one
with γ = .75, and another with γ = .25.

b. For each of the data sets generated, graph the density histogram and superimpose it by
the density f(x) defined in the equation above. Make sure to choose the number of
bins for the histogram appropriately. In each case explain why the shape of the density
that you obtain is expected.
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3. [30 points] Problem 42 on page 111 of your text gives the pdf for the double exponential
density with parameter λ. It also suggests a method to generate random numbers from the
double exponential family using two random variables W and T , described in the problem.

a. Write a program that generates random numbers from the double exponential family.
The input to the program should be the parameter λ, and the number of random
numbers to be generated, n. The output should be n pseudo random numbers from
the double exponential with parameter λ. You are only allowed to use runif in your
program for random number generation.

b. Write a program that uses the Accept/Reject algorithm efficiently to generate n obser-
vations from the standard normal density N(0, 1), using random numbers that are
generated from the uniform(0,1) and the double exponential random variate with pa-
rameter λ = 1 [your program in part (a)]. Your program should also count and report
the proportion of values that are rejected. Give the density histogram of n = 10, 000
numbers generated from your program and superimpose it by the standard normal
pdf.
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The project contains 3 problems. To make it easier to run each problem (due to the use of
Dynamic UI in the project), I implemented each one in a separate Mathematica notebook.

Below are the links to each problem. There are 3 links to each problem, one for the PDF file
report, second for the HTML version of the report, and one for the Mathematica notebook
itself to run the code.

In all 3 cases, to run the Mathematica code, please do the following: Download the Mathe-
matica notebook. Open it using Mathematica. Click on the Evaluation menu option at the
top, and then select Evaluate Notebook. This will run all the code. Scroll to the bottom of
the notebook and the GUI should be UP and ready to use.
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2.3.2 Report and code links

2.3.2.1 problem 1

Project one. Problem one. Mathematics 502 Probability and Statistics
Nasser Abbasi, September 26,2007. California State University, Fullerton

Problem 1 part (a)

The CDF given is defined as FHxL =
Ø≤
∞

±
≤

1 - ã-Λx x ³ 0

0 o.w.
  To find F-1 we need to solve for x in the equation 1 - ã-Λx for x ³ 0 Hence we

write

y = 1 - ã-Λx

ã-Λx = 1 - y

-Λx = ln H1 - yL
x =

-1

Λ
 lnH1 - yL

Therefore

F-1HyL =
-1

Λ
 lnH1 - yL

Now to generate random numbers which belongs to an exponential distribution, we will now generate random numbers from U  H0, 1L
and for each such number generated, we will apply the above function F-1 on it, and the result will be a random number which belongs

to  the  exponential  distribution.   For  example,  if  Λ = 2  and  a  uniform  random  number  is  say  0.4,  then  we  evaluate

F-1H 0.4L =
-1

2
 lnH1 - 0.4L = 0.25541

And so this is the idea to implement. We need to first seed the uniform random number generator before we start.

 

Algorithm

Input: Λ: parameter, n: number of random numbers to generate

output: a list of n random numbers from the probability density function ~ F  HxL given above.

1. Seed the uniform random number generator with (010101).

2. initialize the array d of size n which will contain the list of random numbers generated below.

This loop below is just an algorithmic view. In actual code, a 'vector' operation Table[] in used for speed.

3. For i in 1..n LOOP

       Generate yk which is a random generated from uniform distribution using the build in function RandomReal[0,1]

        d@iD= F-1HykL using input Λ. 

    END LOOP

4. Find histogram of d. Select an appropriate number of bins. Let fa be the histogram found.

5. Now find the relative frequency fr by dividing set fa by the number of observations n. Hence histogram now is fr =
fa

n

6. Now scale the histogram such that it is density. Total area is 1. Do this by finding total area under histogram, and divide each bin

count by this area.

7. Plot the histogram and the exponential distribution  Λã-Λx on the same plot.
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2. initialize the array d of size n which will contain the list of random numbers generated below.

This loop below is just an algorithmic view. In actual code, a 'vector' operation Table[] in used for speed.

3. For i in 1..n LOOP

       Generate yk which is a random generated from uniform distribution using the build in function RandomReal[0,1]

        d@iD= F-1HykL using input Λ. 

    END LOOP

4. Find histogram of d. Select an appropriate number of bins. Let fa be the histogram found.

5. Now find the relative frequency fr by dividing set fa by the number of observations n. Hence histogram now is fr =
fa

n

6. Now scale the histogram such that it is density. Total area is 1. Do this by finding total area under histogram, and divide each bin

count by this area.

7. Plot the histogram and the exponential distribution  Λã-Λx on the same plot.

Code Implementation

Define the function F-1which was derived earlier. This is the inverse of the CDF of the exponential density function Λe-Λx

In[156]:= Remove@"Global`*"D;
gDebug = False;

In[158]:= inverseCDFofExponentialDistribution@Λ_, n_D := ModuleB8<,
-1

Λ
 Log@1 - nDF

Function below is called to generate N random numbers using the above F
-1

function HUser needs to seed before calling

In[159]:= getRandomNumbersFromExponential@Λ_, nRandomVariables_D := Module@8i<,
Table@ inverseCDFofExponentialDistribution@Λ, RandomReal@DD, 8i, nRandomVariables<DD

2  project1_nasser_problem_one.nb

Printed by Mathematica for Students
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Problem 1 part(b)

Generate  n = 10000 for Λ = 2 and overlay with relative frequency, use appropriate number of bins. See appendix for the function
postProcessForPartOne[] which generate the plots. Removed below to reduce code clutter in the main report.

This function makes a histogram which is scaled to be used to overlay density plots, or other functions. 
Input:  originalData: this is an array of numbers which represents the data to bin
          nBins: number of bins
output: the histogram itself but scaled such that area is ONE

In[160]:= Needs@"BarCharts`"D
nmaMakeDensityHistogram@originalData_, nBins_D :=

ModuleB8freq, binSize, from, to, scaleFactor, j, a, currentArea<,
to = Max@originalDataD;
from = Min@originalDataD;
binSize = Hto - fromL �nBins;
freq = BinCounts@originalData, binSizeD;
currentArea = Sum@binSize *freqPiT, 8i, nBins<D;

freq =
freq

currentArea
;

a = from;

Table@8a + Hj - 1L * binSize, freqPjT, binSize<, 8j, 1, nBins<D
F

This function to overlay the histogram and the PDF. It is used by the simulation program as well (that is why it is a little larger than
needed)

Printed by Mathematica for Students
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In[162]:= postProcessForPartOne@randomNumbers_, nBins_, Λ_, nRandomVariables_, fromX_, toX_D :=

ModuleB8frequency, relativeFrequency, p1, p2,

x, factor, max, imSize = 300, dx, p, pCDF, pinvCDF, gz, g<,

H*find dx which is bin size, needed by Mathematica BinCount function*L
dx = HtoX - fromXL �nBins;

H*generate frequency count using the above bin size*L
frequency = BinCounts@randomNumbers, 8fromX, toX, dx<D;

H*now normalize by total number of observation to obtain the relative frequencies*L
relativeFrequency = N@frequency �nRandomVariablesD;

H*Now divide by scale factorΛ, to scale it *L
max = Max@relativeFrequencyD;
factor = Λ �max;
relativeFrequency = relativeFrequency *factor;

gz = nmaMakeDensityHistogram@randomNumbers, nBinsD;
p1 = GeneralizedBarChart@gz, BarStyle ® White,

ImageSize ® imSize, PlotLabel ® "Λ=" <> ToString@ΛD <> " variables=" <>

ToString@nRandomVariablesD <> " bins=" <> ToString@nBinsDD;

p2 = Plot@PDF@ExponentialDistribution@ΛD, xD, 8x, fromX, toX<
, PlotRange ® All, Frame ® True, PlotStyle ® 8RedH*,Thick*L<, ImageSize ® imSizeD;

p = Show@8p1, p2<D;

pinvCDF = PlotBinverseCDFofExponentialDistribution@Λ, yD, 8y, 0, Λ<

, PlotLabel ® "x=F-1HyL=
-1

Λ
Log@1-yD", ImageSize ® 200, AxesLabel ® 8"y", "x"<F;

pCDF = PlotA1 - Exp@-Λ xD, 8x, fromX, toX<
, PlotLabel ® "y=FHxL=1-e-Λ x", ImageSize ® 200, AxesLabel ® 8"x", "y"<E;

g = Grid@88pinvCDF, pCDF<<D;
Grid@ 8 8p<, 8g<<, Alignment ® 88Center<, 8Center<<, Frame ® AllD

F

now generate the needed outout for N = 10000

4  project1_nasser_problem_one.nb

Printed by Mathematica for Students
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In[163]:= nBins = 50; Λ = 2; numberOfVariables = 10 000; fromX = 0; toX = 2.5;

postProcessForPartOne@getRandomNumbersFromExponential@Λ, numberOfVariablesD,
nBins, Λ, numberOfVariables, fromX, toXD

Out[164]=

1 2 3 4
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1.0

1.5

2.0

Λ=2 variables=10000 bins=50

0.5 1.0 1.5 2.0
y

0.5
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2.0

x

x=F-1HyL=
-1
Λ

Log@1-yD

0.5 1.0 1.5 2.0 2.5
x

0.2

0.4

0.6

0.8

1.0

y

y=FHxL=1-e-Λ x

Comment and analysis

Below I show snap shots of few plots of the density overlaid with the histogram for different  values of n which is the number of

random variables. 

We see from the plots below, that for a fixed number of bins, fixed Λ, that as more random variables are generated, the histogram
overlaid on top of the actual PDF becomes closer and closer to the PDF curve. The error between the histogram and the PDF curve
becomes smaller  the larger  the number of random variables  used.  This  indicates  that this method of finding random numbers for
density function will converge to the density function. We need to select an appropriate bin size to see this more clearly. The smaller
the bin size the more clear this will become (but too small a bin size will make the histogram itself not too clear).

Please see appendix for additional GUI based simulation for this part of the project.

Printed by Mathematica for Students



chapter 2. projects 27

In[165]:= nBins = 40; Λ = 2; fromX = 0; toX = 2.5;

SeedRandom@010 101D;
p = Table@postProcessForPartOne@getRandomNumbersFromExponential@Λ, nRandomVariablesD,

nBins, Λ, nRandomVariables, fromX, toXD, 8nRandomVariables, 500, 6 *500, 500<D;
GraphicsGrid@8 8 First@p@@1, 1, 1DDD, First@p@@2, 1, 1DDD<, 8First@p@@3, 1, 1DDD,

First@p@@4, 1, 1DDD<, 8First@p@@5, 1, 1DDD, First@p@@6, 1, 1DDD<<,
Frame ® All, ImageSize ® 600D

Out[168]=

0.5 1.0 1.5 2.0 2.5
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1.5

2.0

Λ=2 variables=500 bins=40

0.5 1.0 1.5 2.0 2.5 3.0
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Λ=2 variables=1000 bins=40
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0.5
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Λ=2 variables=1500 bins=40

1 2 3 4
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1.0
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Λ=2 variables=2000 bins=40

1 2 3 4

0.5

1.0

1.5

2.0

Λ=2 variables=2500 bins=40

1 2 3 4

0.5

1.0

1.5

2.0

Λ=2 variables=3000 bins=40

6  project1_nasser_problem_one.nb

Printed by Mathematica for Students
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Problem 1 simulation

Define function which accepts a list of random variables from exponential distribution, and Λ and generates a plot of the histogram
overlaid by the exponential density plot.

In[169]:= m = Manipulate@HSeedRandom@010 101D;
postProcessForPartOne@getRandomNumbersFromExponential@Λ, nD, nBins, Λ, n, 0, maxXDL,

88nBins, 50, "Number of bins?"<, 1, 100, 1, ContinuousAction ® True,

Appearance ® "Labeled"<,
88Λ, 2, "Λ"<, 1, 10, .01, ContinuousAction ® True, Appearance ® "Labeled"<,
88n, 10 000, "number of random variables?"<,
10, 100 000, ContinuousAction ® True, Appearance ® "Labeled"<,

88maxX, 2.5, "X Plot range?"<, 1, 100, 1, ContinuousAction ® True, Appearance ® "Labeled"<,
AutorunSequencing ® 881, 15<, 82, 20<, 83, 15<<

D

Out[169]=
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Mathematica notebook

2.3.2.2 problem 2

Project one. Problem 2. Mathematics 502 Probability and Statistics
Nasser Abbasi, September 26,2007. California State University, Fullerton

Part 2 (a)

The mixed distribution is
 f HxL = ΓΦ0HxL + H1 - ΓL Φ1HxL  -¥ £ x £ ¥

Where Φ0  is the density function for normal distribution with Σ=1,Μ=0,  and Φ1  is the density function for normal distribution with

Σ=1,Μ=3
We need to generate random numbers from the above density function.
The following is the idea of how to solve this problem. Let us consider the case for Γ=75% .Generate a r.v. from a uniform distribution,
which will be between @0, 1D.  Let this number be called Ζ . If Ζ < .76 then now we will generate a random  number from the above

Φ0HxL normal distribution otherwise we will generate a random number from Φ1HxL distribution. Hence this is the algorithm
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Algorithm

Input: Γ,Σ0, Μ0, Σ1, Μ1, n (where n is number of random number to generate for mixture f HxL
output: n random numbers that belong to mixture f HxL

seed the random number generator (010101)
Initialize array d  of the size of the random numbers generated

 
For i in 1..n LOOP
    Ζ = generate a r.v. from U@0, 1D
    IF Ζ<Γ THEN
        d[i]= generate a random number from Φ0 ~ NHΣ0, Μ0L 
    ELSE
        d[i]= generate a random number from Φ1 ~ NHΣ1, Μ1L
    ENDIF
END LOOP

output d which will now contain n random variables drawn from the above probability density function.

Function to implement the mixture random variable algorithm

In[190]:= Remove@"Global`*"D;
gDebug = False;

In[192]:= H*this function below imlements the above algorithm*L
processPartTwo@Γ_, Μ0_, Σ0_, Μ1_, Σ1_, n_D := Module@8d = 8<, k, Ζ<,

Ζ = Table@RandomReal@D, 8k, 1, n<D;
d = Table@ If@ΖPkT < Γ, RandomReal@NormalDistribution@Μ0, Σ0DD,

RandomReal@NormalDistribution@Μ1, Σ1DDD, 8k, 1, n<D
D

Now generate 2 sets of numbers each 10000 long, one for Γ = .75 and the second for Γ = .25

In[193]:= Μ0 = 0; Σ0 = 1; Μ1 = 3; Σ1 = 1; n = 10 000;

SeedRandom@010 101D;
Γ = .75; setA = processPartTwo@Γ, Μ0, Σ0, Μ1, Σ1, nD;
Γ = .25; setB = processPartTwo@Γ, Μ0, Σ0, Μ1, Σ1, nD;

Part 2 (b)

Generate 2 plots, one for Γ = .75 and one for Γ=.25 for number of random variables=10000 generated in part (a) overlaid by histo-
gram.
First  define  the mixture density function (the  true density). Please  see appendix for the code that overlays the histogram and the
mixture function called postprocessPartTwo[]. Moved below to the appendix to reduce code clutter in the main report.

In[197]:= mixtureDensity@x_, Γ_, Μ0_, Σ0_, Μ1_, Σ1_D :=

Γ PDF@NormalDistribution@Μ0, Σ0D, xD + H1 - ΓL PDF@NormalDistribution@Μ1, Σ1D, xD;

Now call the above on the 2 sets of 10000 numbers generated in part (a) and display the result

This function makes a histogram which is scaled to be used to overlay density plots, or other functions. 
Input:  originalData: this is an array of numbers which represents the data to bin
          nBins: number of bins
output: the histogram itself but scaled such that area is ONE
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This function makes a histogram which is scaled to be used to overlay density plots, or other functions. 
Input:  originalData: this is an array of numbers which represents the data to bin
          nBins: number of bins
output: the histogram itself but scaled such that area is ONE

In[198]:= Needs@"BarCharts`"D
nmaMakeDensityHistogram@originalData_, nBins_D :=

ModuleB8freq, binSize, from, to, scaleFactor, j, a, currentArea<,
to = Max@originalDataD;
from = Min@originalDataD;
binSize = Hto - fromL �nBins;
freq = BinCounts@originalData, binSizeD;
currentArea = Sum@binSize *freqPiT, 8i, nBins<D;

freq =
freq

currentArea
;

a = from;

Table@8a + Hj - 1L * binSize, freqPjT, binSize<, 8j, 1, nBins<D
F

In[200]:= postprocessPartTwo@d_, Γ_, Μ0_, Σ0_, Μ1_, Σ1_, nRandomVariables_, imageSize_D :=

Module@8freq, p, pList, xFrom, xTo, scaleFactor, maxSampled, sampled,

gz = 8<, fz0, fz1, x, maxBin, imSize = imageSize, nBins = 70, from<,
xFrom = Min@dD;
xTo = Max@dD;
gz = nmaMakeDensityHistogram@d, nBinsD;
pList = GeneralizedBarChart@gz, BarStyle ® White, ImageSize ® imSizeD;

p = Plot@mixtureDensity@x, Γ, Μ0, Σ0, Μ1, Σ1D, 8x, xFrom, xTo<,
AxesOrigin ® 80, 0<, PlotRange ® All, PlotLabel ® "Analytical plot of fHxL",
ImageSize ® imSize, H*PlotStyle®8Dashed,Red<*LPlotStyle ® 8Red<D;

Show@8pList, p<,
PlotLabel ® Style@"true fHxL vs. random variables generated\n" <> "Γ=" <> ToString@ΓD <>

" Number of random variables=" <> ToString@nRandomVariablesD <> "\n", 10D,
AxesLabel ® 8"x", "fHxL, scaled frequency"<D

D

Printed by Mathematica for Students



chapter 2. projects 32

In[201]:= Γ = .75; p1 = postprocessPartTwo@setA, Γ, Μ0, Σ0, Μ1, Σ1, n, 300D;
Γ = .25; p2 = postprocessPartTwo@setB, Γ, Μ0, Σ0, Μ1, Σ1, n, 300D;
Grid@88p1, p2<<, Frame ® All, Spacings ® 0, ItemSize ® FullD

Out[203]=
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Comment and analysis on result of part 2 (b) plots

In the left plot, Γ=.75, hence 75% of the mixture comes from Φ0 which has a mean of 0, hence we would expect that at zero the bulk of

the concentration, which what the plots shows to be the case (since both concentration have the same variance). Hence there should be
more random numbers generated from this mixture around x=0 as well, and we see from the histogram that this is the case.
In the right plot, now Γ=.25, hence 75% of the concentration will come the Φ1  distribution which has mean of 3. Hence again, we see

that more random numbers are generated around 3 than anywhere else. These plots also show that the random numbers generated will
have a probability density which will converge to the f HxL given as more and more random variables are generated.

Simulation program for problem 2

GUI to simulate part 2(b) of the project
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In[204]:= m = Manipulate@
postprocessPartTwo@processPartTwo@Γ, Μ0, Σ0, Μ1, Σ1, nD, Γ, Μ0, Σ0, Μ1, Σ1, n, 400D,
88Γ, .75, "Select Γ"<, 0, 1, .1, Appearance ® "Labeled"<
, 88Μ0, 0, "Select Μ for Φ0"<, -30, 30, .1, Appearance ® "Labeled"<
, 88Μ1, 3, "Select Μ for Φ1"<, -30, 30, .1, Appearance ® "Labeled"<
, 88Σ0, 1, "Select Σ for Φ0"<, 0.1, 6, .1, Appearance ® "Labeled"<
, 88Σ1, 1, "Select Σ for Φ1"<, 0.1, 6, .1, Appearance ® "Labeled"<
, 88n, 10 000, "Select n, number of r.v. to generate"<, 10 000, 100 000, 10 000,

Appearance ® "Labeled"<, AutorunSequencing ® 881, 15<, 82, 25<, 83, 25<, 84, 25<, 85, 25<<
D

Out[204]=
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In[205]:= H*Export@"m.swf",m,"RepeatAnimation"®True,"CompressionMethod"->NoneD*L
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Mathematica notebook

2.3.2.3 problem 3

Project one. Problem Three. Mathematics 502 Probability and Statistics
Nasser Abbasi, September 26,2007. California State University, Fullerton

Problem 3 part (a)

We are asked to generate R.V's from f HxL =
Λ

2
 ã-ΛÈxÈ. We note as shown in the problem itself, that R.V. X  can be written as product of 2

R.V WT where W is ±1 with probability 
1

2
each. Hence to generate R.V. we do the following. We generate n  R.V. from uniform

distribution [0,1] using Mathematica random number generator. Then we check if each number is <
1

2
 or not, and we generate 1 or -1

as the case may be. We then generate n random variables from the exponential distribution, which we know how to do from part (a).

Then we multiply the above 2 vectors, element wise, with each others. The first vector being the vector of 1's and -1's. And the second

vector being the RV's from the exponential distribution.  This is the algorithm

Algorithm

Input: Λ,n (number of random variables to generate)

output: list of random numbers which belong to density f HxL =
Λ

2
 ã-ΛÈxÈ

Seed the random number generator with unique value for us.

A = Generate n random numbers from the exponential distribution with parameter Λ (CALL problem 1 part(a) with the input Λ,n) This

uses F-1method and uniform random number generator as well.

B = Generate n random numbers from uniform random number generator [0,1]

FOR i in 1..n LOOP  -- Note: This is algorithm view. In code 'vectored' operation is used.

        IF B(i)<.5 THEN

            B(i) = 1 

         ELSE

            B(i) = -1

         END IF

 END LOOP

 result = B * A

 

 Now generate a histogram from the result above.

The following function implements the above algorithm
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Seed the random number generator with unique value for us.

A = Generate n random numbers from the exponential distribution with parameter Λ (CALL problem 1 part(a) with the input Λ,n) This

uses F-1method and uniform random number generator as well.

B = Generate n random numbers from uniform random number generator [0,1]

FOR i in 1..n LOOP  -- Note: This is algorithm view. In code 'vectored' operation is used.

        IF B(i)<.5 THEN

            B(i) = 1 

         ELSE

            B(i) = -1

         END IF

 END LOOP

 result = B * A

 

 Now generate a histogram from the result above.

The following function implements the above algorithm

Code Implementation

Define the function F-1which was derived earlier. This is the inverse of the CDF of the exponential density function Λe-Λx

Remove@"Global`*"D;
gDebug = False;

inverseCDFofExponentialDistribution@Λ_, n_D := ModuleB8<,
-1

Λ
 Log@1 - nDF

Function below is called to generate N random numbers using the above F-1 function HUser needs to seed before calling

getRandomNumbersFromExponential@Λ_, nRandomVariables_D := Module@8i<,
Table@ inverseCDFofExponentialDistribution@Λ, RandomReal@DD, 8i, nRandomVariables<DD

getRandomNumbersFromDoubleExponential@Λ_, numberOfRandomVariables_D := Module@8W, T<,
W = getRandomNumbersFromExponential@Λ, numberOfRandomVariablesD;
T = Table@If@RandomReal@D < .5, 1, -1D, 8i, numberOfRandomVariables<D;
W TD

Test the above function by plotting the histogram generated for say n = 10 000 overlaid by the true double exponential density func-

tion.
First, define the double exponential function

doubleExponential@Λ_, x_D :=
Λ

2
 Exp@-Λ Abs@xDD

Now do the overlay plot

This function makes a histogram which is scaled to be used to overlay density plots, or other functions. 
Input:  originalData: this is an array of numbers which represents the data to bin
          nBins: number of bins
output: the histogram itself but scaled such that area is ONE

Needs@"BarCharts`"D
nmaMakeDensityHistogram@originalData_, nBins_D :=

ModuleB8freq, binSize, from, to, scaleFactor, j, a, currentArea<,
to = Max@originalDataD;
from = Min@originalDataD;
binSize = Hto - fromL �nBins;
freq = BinCounts@originalData, binSizeD;
currentArea = Sum@binSize *freqPiT, 8i, nBins<D;

freq =
freq

currentArea
;

a = from;

Table@8a + Hj - 1L * binSize, freqPjT, binSize<, 8j, 1, nBins<D
F
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SeedRandom@010 101D;
n = 10 000; Λ = 1; nBins = 100; imageSize = 400;

postprocessPartThreeA@listOfRandomNumbers_, Λ_, nBins_, imageSize_D :=

Module@8gz, pList, xFrom, xTo<,
xFrom = Min@listOfRandomNumbersD;
xTo = Max@listOfRandomNumbersD;
gz = nmaMakeDensityHistogram@listOfRandomNumbers, nBinsD;
pList = GeneralizedBarChart@gz, BarStyle ® White, ImageSize ® imageSizeD;
p = Plot@doubleExponential@Λ, xD, 8x, xFrom, xTo<, AxesOrigin ® 80, 0<, PlotRange ® All,

ImageSize ® imageSize, H*PlotStyle®8Dashed,Red<*LPlotStyle ® 8Red<D;

Show@8pList, p<,
PlotLabel ® Style@"true fHxL vs. random variables generated\n" <> " Λ=" <> ToString@ ΛD <>

" Number of random variables=" <> ToString@Length@listOfRandomNumbersDD <> "\n", 14D,
AxesLabel ® 8"x", "fHxL, scaled frequency"<D

D

Framed@
postprocessPartThreeA@getRandomNumbersFromDoubleExponential@ Λ, nD, Λ, nBins, imageSizeDD
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Problem 3 part(b)

In this part, we need to generate a list of r.v's that belong to normal distribution N(0,1), using uniform random number generator U[0,1] 

and using the random numbers generated from the double exponential density function in part (a) above. We are asked to use the 

accept/reject method.

First the method is explained, then the algorithm outlined, then the implementation shown and a test case given, then a GUI interface 

written to test the algorithm for different parameters values.

Accept/Reject algorithm

input: n (number of random variables to generate)

        Λ (the exponential density parameter)

        f  HxL the density function for random variable X which we wish to generate random variables 

        fM(x) the density which we will use to help in generating the random variables from fX (x). This density is such that it is easy to 

generate random variables from. Much easier that from f(x) and that is why it was selected.

output: list of random numbers of length n from f  HxL
 

Step 1: Find C. Where c = sup " x 
fX HxL
fMHxL  To solve this, this is the algorithm

           Algorithm for  step 1:   Let  fM HxL =
Λ

2
 e-Λx  (since  double  exponential  is  symmetric,  I'll  use  one  sided version).  Let

fX HxL =
1

2 Π
 ã

-x2

2 .  Now find the ratio rHxL =
fX HxL
fMHxL =

1

2 Π

 ã

-x2

2

Λe-Λx
 Now find where the maximum of this ratio is using normal calculus

method:  Take the derivative w.r.t. x and set it to zero. Solve the resulting equation for x. Evaluate the ratio at this root. This gives C.

We find that C = 1.31549   The following few lines of code finds C:
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Λ = 1; fm =
Λ

2
 Exp@- xD; fx = PDF@NormalDistribution@0, 1D, xD;

ratio =
fx

fm
;

root = First�Solve@D@ratio, xD � 0, xD;
c = N@ratio �. rootD

1.31549

Step 2: Now that we found C in step 1, then the envelop function becomes C * fM HxL = C 
Λ

2
 ã-ΛÈxÈ

Step 3: seed the number random generator

            initialize an array d of size n to contain all the accepted random numbers generated

            initialize counter number_accepted=0

            WHILE number_accepted < n DO

                 generate  r.v. from U[0,1] call it u.  

                 Generate  r.v. from double exponential density (using part(a)) call this x

                 IF u * C * fM HxL < fX HxL THEN

                     d[i]=x

                     number_accepted++

                 END IF

             END LOOP

   Step 4: Now array d contains the n random numbers generated from the normal density N[0,1].  Make histogram and overlay it over 

N[0,1]
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Diagram showing main steps in the algorithm
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Accept Reject Algorithm Implementation

acceptReject@Λ_ , numberOfRandomNumbersToGenerate _, c_

H*This is for scaling the envelope with so that envelope ³ fHxL everywhere*L
, Μ_ H*mean of Normal Dist*L, Σ_ H*std of normal dist*L

D := Module@8nFailed = 0, nPassed = 0, y, x, d, i, maxEnvelope, fx, u<,
RandomSeed@010 101D; H*start from clean random number generator*L
maxEnvelope = c *doubleExponential@Λ, 0D;
d = Table@0, 8i, numberOfRandomNumbersToGenerate<D;

While@nPassed < numberOfRandomNumbersToGenerate,

8x = getRandomNumbersFromDoubleExponential@Λ, 1D@@1DD;
y = c *doubleExponential@Λ, xD *RandomReal@80, 1<D;
fx = PDF@NormalDistribution@Μ, ΣD, xD;
If@y £ fx, 8nPassed++, dPnPassedT = x<, nFailed++D;<

D;

8d, nFailed<
D

Test case for n=10,000

Test the above function, and make a plot of histogram overlaid on top of density of N(0,1)
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Λ = 1; Μ = 0; Σ = 1; xFrom = -4 Σ; xTo = 4 Σ; n = 10 000;

c = 1.315489246958914; H*see algorithm above on how C was found*L
nBins = 120;

Clear@xD;

8listOfNumbers, nFailed< = acceptReject@Λ, n, c, Μ, ΣD;

gz = nmaMakeDensityHistogram@listOfNumbers, nBinsD;
pList = GeneralizedBarChart@gz, BarStyle ® White, ImageSize ® 400, PlotRange ® AllD;

p = Plot@8c * doubleExponential@1, xD, PDF@NormalDistribution@0, 1D, xD<,
8x, xFrom, xTo<, PlotRange ® All, PlotStyle ® 8Red, Black<, ImageSize ® 400D;

Framed@Show@8pList, p<,
PlotLabel ® "Total number of attempts during process=" <> ToString@n + nFailedD <>

"\nNumbers rejected during process=" <> ToString@nFailedD <> " %Failed =" <>

ToString@nFailed � Hn + nFailedL *100.DDD

c * fM HxL

N@0, 1D

-4 -2 2 4
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0.4

0.5

0.6

Total number of attempts during process=13137

Numbers rejected during process=3137 %Failed =23.8791

The above is a plot showing the histogram for random numbers generated using the accept - reject method for N=10,000. The random
numbers are very close the N[0,1] which indicates this method is working well. The larger N is, the more closely the random numbers
histogram will approach N[0,1] probability density.

I have implemented a GUI based simulation as well for the above problem, please see the appendix below to run the simulation part.
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Problem 3 simulation

Module@8gnTrialsSoFar = 0, gnRejectSoFar = 0, gnAcceptedSoFar = 0, gmaxEnvelope, gmultiplier,

gΛ, gΜ, gΣ, gAcceptedXSet, gnBins, gxFrom, gxTo, gAcceptedPointsCoordinates, gMaxAccepted<,

initializeSimulation@D := Module@8<,
RandomSeed@010 101D;
gmultiplier = 1.315489246958914;

gnBins = 40;

gΛ = 1;

gΜ = 0;

gΣ = 1;

gxFrom = -6 gΣ;

gxTo = 6 gΣ;

gMaxAccepted = 10 000;

gnTrialsSoFar = 0; gnRejectSoFar = 0; gnAcceptedSoFar = 0;

gAcceptedXSet = Table@0, 8i, gMaxAccepted<D;
gAcceptedPointsCoordinates = Table@0, 8i, gMaxAccepted<D;
gmaxEnvelope = gmultiplier *doubleExponential@gΛ, 0D

D;

finalizeSimulation@D := Module@8gz, p, pList, x, res<,
If@gnTrialsSoFar > 0,

8
gz = nmaMakeDensityHistogram@gAcceptedXSetP1 ;; gnAcceptedSoFarT, gnBinsD;

pList = GeneralizedBarChart@gz,
BarStyle ® White,

ImageSize ® 250,

PlotRange ® 88-4.5 gΣ, 4.5 gΣ<, 80, 1.2<<D;

p = Plot@PDF@NormalDistribution@gΜ, gΣD, xD,
8x, gxFrom, gxTo<,
PlotStyle ® Red,

PlotRange ® AllD;

res = Show@8pList, p<,
PlotLabel ® "Total number of attempts during process=" <> ToString@gnTrialsSoFarD <>

"\nNumbers accepted during process=" <> ToString@gnAcceptedSoFarD <>

" %Accepted =" <>

ToString@gnAcceptedSoFar � HgnTrialsSoFarL *100.D <>

"\nNumbers rejected during process=" <>

ToString@gnRejectSoFarD <> " %Failed =" <>

ToString@gnRejectSoFar � HgnTrialsSoFarL *100.D
D;

<
,

res = "Ready...";

D;
res

D;

processOneAcceptReject@D := Module@8x, y, fx, res, p, accepted, p2, pStats<,
gnTrialsSoFar++;

If@gnTrialsSoFar < 10, Return@"Ready.."DD;

x = getRandomNumbersFromDoubleExponential@gΛ, 1D@@1DD;
;
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y = gmultiplier *doubleExponential@gΛ, xD *RandomReal@80, 1<D;
fx = PDF@NormalDistribution@gΜ, gΣD, xD;
If@y £ fx

, 8gnAcceptedSoFar++;

accepted = True;

gAcceptedXSetPgnAcceptedSoFarT = x;

gAcceptedPointsCoordinatesPgnAcceptedSoFarT = 8x, y<
<,
8gnRejectSoFar++, accepted = False<

D;

p = Plot@8gmultiplier * doubleExponential@1, xD, PDF@NormalDistribution@0, 1D, xD<,
8x, gxFrom, gxTo<, PlotRange ® All, PlotStyle ® 8Red, Black<, ImageSize ® 250,

PlotLabel ® Row@8"Trial @", gnTrialsSoFar, "D\tc=@", gmultiplier, "D\n", If@y £ fx,

Style@"Accepted", BlackD, Style@"Rejected", RedDD, "\tPoint=H", x, " , ", y, "L"<D,
Epilog ® 8If@accepted, 8PointSize@LargeD, Green, Point@8x, y<D,

8PointSize@SmallD, Gray, Point@gAcceptedPointsCoordinatesP1 ;; gnAcceptedSoFarTD<<,
8PointSize@LargeD, Red, Point@8x, y<D, 8PointSize@SmallD, Gray,

Point@gAcceptedPointsCoordinatesP1 ;; gnAcceptedSoFarTD<<
D

<
D;
p2 = finalizeSimulation@D;
pStats = Row@8"Trial @", gnTrialsSoFar, "D\n", If@y £ fx,

Style@"Accepted", BlackD, Style@"Rejected", RedDD, "\tPoint=H", x, " , ", y, "L"<D;
H*Grid@8 8pStats<,8Grid@8 8p,p2< <D<<,Frame®All,Alignment®8Center<D;*L
Grid@8 8p, p2< <, Frame ® All, Alignment ® 8Center<D

D
D

m = Manipulate@res = "Ready to run..."; runIt = False; i = 0;

Dynamic@
If@runIt && Not@stopItD && i < 10 000,

Hi++; res = processOneAcceptReject@DL,
res

D
D,
88runIt, True, ""<, Button@Style@"Click to start", 10D, 8i = 0;

initializeSimulation@D; stopIt = False; runIt = True<D &, ContinuousAction -> False<,
88stopIt, False, ""<, Button@Style@"Click to stop", 10D, 8stopIt = True; res<D &,

ContinuousAction -> False<, AutorunSequencing ® 882, 120<<
D

Click to start

Click to stop

Ready to run...

10  project1_nasser_problem_three.nb

Printed by Mathematica for Students
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Mathematica notebook

2.3.3 Simulation movies

2.3.3.1 Simulation problem 1. Random variables from exponential distribution
using F−1 method

Movie swf

projects/project1/code/project1_nasser_problem_three.nb
projects/project1/problemOne.swf
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2.3.3.2 Simulation problem 2 (Random numbers from mixture)

Movie swf

2.3.3.3 Simulation Problem 3 (Accept/Reject)

Movie swf

projects/project1/part2.swf
projects/project1/part3_with_c.swf
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2.4 Project 2
Problem: Simulation for estimator to estimate population size as sample size and number of
samples taken is changed. Estimator for population size used in 2*sample_mean-1
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3.1 List of HWs to do

Math 502AB (Probability and Statistics) Homework - Fall 2007

From John Rice's book, Third Edition:  Problems with an asterisk are new in the 3rd Edition, as
compared to the 2nd Edition.

Ch. Sec. Exercise Numbers Due Date

1

 

 

2-3  2, 6, 7, 9  

4  11, 16, 18, 35b, 42  

5  45, 53, 54, 64, 79  

2

 

 

1 6, 11, 19, 21, 27, 28, 31  

2 34, 39, 44, 49  

3 59, 60, 62, 66, 67, 70, 71, 72 (You may use Matlab or R)  

3

 

 

1, 2, 3 1, 3, 6, 8ab, 9a, 12ab, 15abcd  

4  14a, 19, 15d  

5

 1b, 8c, 9b, 12c, 14b, 15e, 20, 21, 22, 24, 32*, 33a*,  34*,
37 (Problem 29 in 2nd Ed., and there is an error in the
expression of the density. Change the value 6 to 15/16), 38
(Problem 30 of 2nd Ed.), 40 (don’t do the expectation
question)

 

6

 11, 42a (Problem 32a in 2nd Ed.), 44(Problem 34 in 2nd

Ed.), 47(Problem 37 in 2nd Ed.), 52(Problem 42 in 2nd Ed.),
55(Problem 45 in 2nd Ed.), 58(Problem 48 in 2nd Ed.),
64(Problem 54 in 2nd Ed.) 

 

7  65(Problem 55 in 2nd Ed.), 68(Problem 58 in 2nd Ed.), 70
(Problem 60 in 2nd Ed.)

 

4
1, 2

 1, 2, 6, 8, 10, 12, 13, 16, 18, 22, 25, 26, 30, 32, 35,
42(Problem 38 in 2nd Ed), 49(Problem 45 in 2nd Ed),
50(Problem 46 in 2nd Ed), 57(Problem 51 in 2nd Ed)

 

3  43(Problem 39 in 2nd Ed), 45(Problem 41 in 2nd Ed),
46(Problem 42 in 2nd Ed), 60(Problem 54 in 2nd Ed)

 

10/5/25, 3:05 PM Homework Assignment (Math 502AB)

file:///home/me/public_html/my_courses/FULLERTON_COURSES/fall_2007/math_502_probability_and_statistics/mori/Math502AB/Homework/H… 1/2

Figure 3.1: page 1
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  4, 5

 20, 63(Problem 57 in 2nd Ed), 66(Problem 60 in 2nd Ed),
67(Problem 61 in 2nd Ed), 68(Problem 62 in 2nd Ed),
70(Problem 64 in 2nd Ed), 75(Problem 69 in 2nd Ed),
77(Problem 71 in 2nd Ed), 83(Problem 77 in 2nd Ed),
84(Problem 78 in 2nd Ed), 85(Problem 79 in 2nd Ed),
90(Problem 84 in 2nd Ed), 92(Problem 86 in 2nd Ed),
96(Problem 90 in 2nd Ed)

 

6  101(Problem 95 in 2nd Ed), 102(Problem 96 in 2nd Ed)  

5    1, 3, 5, 6, 10, 12, 13, 14, 21, 25  

6    2, 5, 6, 7, 8, 10, 11  

8

 

8.1-8.4

4 (ab)*, 7(a) (Problem 5 in 2nd Ed), 13 (Problem 11 in 2nd

Ed), 14, 16a (Problem 14 in 2nd Ed), 18a(Problem 16 in 2nd

Ed), 20(Problem 18 in 2nd Ed), 21a(Problem 19 in 2nd Ed),
23(MME only) (Problem 21 in 2nd Ed), 32(Problem 28 in
2nd Ed), 43(a-e, MME only)*, 50a(Problem 42 in 2nd Ed),
53a(Problem 45 in 2nd Ed)

 

8.5

4 (cd)*, 6 (ac)(Problem 4 in 2nd Ed), 7(bc), 8* (except c),
11 (Problem 9 in 2nd Ed), 12 (Problem 10 in 2nd Ed), 16bc,
18bc(Problem 16 in 2nd Ed), 21b(Problem 19 in 2nd Ed),
23(MLE only) (Problem 21 in 2nd Ed), 27(Problem 25 in
2nd Ed), 30*, 43(a-e, MLE only)*, 48*, 50(bc) (Problem
42 in 2nd Ed), 51, 53(b-d) (Problem 45 in 2nd Ed),
60(Problem 52 in 2nd Ed)

 

8.6 4 e*, 7d*, 62*, 63*  

8.7-8.8  6b(Problem 4 in 2nd Ed), 16d, 18d, 21c (Problem 19 in 2nd

Ed), 68, 71, 73
 

9  

 3, 7, 9, 12, 13, 24(Problem 16 in 2nd Ed), 26(Problem 18 in
2nd Ed), 28(Problem 20 in 2nd Ed), 29(Problem 21 in 2nd

Ed), 33(Problem 25 in 2nd Ed), 36(Problem 28 in 2nd

Ed),41

 

       

 

10/5/25, 3:05 PM Homework Assignment (Math 502AB)

file:///home/me/public_html/my_courses/FULLERTON_COURSES/fall_2007/math_502_probability_and_statistics/mori/Math502AB/Homework/H… 2/2

Figure 3.2: page 2
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3.2 HW 1

3.2.1 1

HW1 Mathematics 502
By Nasser Abbasi

Problem 2, page 27

� Question

� Answer

a) This is a list of the sample space. Simply toss one die, then make a toss of the second die. The result is as shown:

s = 81, 2, 3, 4, 5, 6<;
Table@8s@@iDD, s@@jDD<, 8i, 6<, 8j, 6<D;
space = Flatten@%, 1D
881, 1<, 81, 2<, 81, 3<, 81, 4<, 81, 5<, 81, 6<, 82, 1<, 82, 2<, 82, 3<, 82, 4<, 82, 5<, 82, 6<,

83, 1<, 83, 2<, 83, 3<, 83, 4<, 83, 5<, 83, 6<, 84, 1<, 84, 2<, 84, 3<, 84, 4<, 84, 5<, 84, 6<,
85, 1<, 85, 2<, 85, 3<, 85, 4<, 85, 5<, 85, 6<, 86, 1<, 86, 2<, 86, 3<, 86, 4<, 86, 5<, 86, 6<<

part b)
(1) This is event A. Look through each outcome in space and see if first+second die is less than or equal to 5

setA = Select@space, First@ðD + Last@ðD £ 5 & D
881, 1<, 81, 2<, 81, 3<, 81, 4<, 82, 1<, 82, 2<, 82, 3<, 83, 1<, 83, 2<, 84, 1<<

(2) This is event B, Look through each outcome in space and see if first die larger than second die

setB = Select@space, First@ðD > Last@ðD & D
882, 1<, 83, 1<, 83, 2<, 84, 1<, 84, 2<, 84, 3<, 85, 1<,

85, 2<, 85, 3<, 85, 4<, 86, 1<, 86, 2<, 86, 3<, 86, 4<, 86, 5<<

(3) This is event C, Look through each outcome in space and see if first die is 4

setC = Select@space, First@ð1D == 4 & D
884, 1<, 84, 2<, 84, 3<, 84, 4<, 84, 5<, 84, 6<<

Part c)
(1) This is AÝC,  which means event is in A and in C

setA Ý setC

884, 1<<

(2) This is B Ü C, which means event in B or in C or in both

setB Ü setC

882, 1<, 83, 1<, 83, 2<, 84, 1<, 84, 2<, 84, 3<, 84, 4<, 84, 5<,
84, 6<, 85, 1<, 85, 2<, 85, 3<, 85, 4<, 86, 1<, 86, 2<, 86, 3<, 86, 4<, 86, 5<<

Printed by Mathematica for Students
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(3) This is AÝ(BÜC)  which is A intersect B union C, i.e. event in A and also in B union C. First find BÜC,  which is event in B
or C or both

setB Ü setC

882, 1<, 83, 1<, 83, 2<, 84, 1<, 84, 2<, 84, 3<, 84, 4<, 84, 5<,
84, 6<, 85, 1<, 85, 2<, 85, 3<, 85, 4<, 86, 1<, 86, 2<, 86, 3<, 86, 4<, 86, 5<<

now find event in A or in the above or in both

setA Ý HsetB Ü setCL
882, 1<, 83, 1<, 83, 2<, 84, 1<<

2  HW1.nb

Printed by Mathematica for Students
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3.3 HW chapter 8
Maple worksheet

Mathematica notebook

3.4 Problem 84 chapter 8
Problem 90 chapter 4

by Nasser Abbasi 5:20 PM, oct 26, 2007

Problem:

Assuming that X ∼ N(0, σ2) use the mgf to show that the odd moments are zero and the
even moments are (2n)! σ2n

2n(n!)

Answer:
MX(t) = e

t2σ2
2

First obtain a recursive formula for the moment generation function

M
(1)
X (t) = tσ2e

t2σ2
2

M
(2)
X (t) = σ2e

t2σ2
2 +

(
tσ2)2 e t2σ2

2

= σ2MX(t) + tσ2M
(1)
X (t)

M
(3)
X (t) = σ2M

(1)
X (t) + tσ2M

(2)
X (t) + σ2M

(1)
X (t)

= 2σ2M
(1)
X (t) + tσ2M

(2)
X (t)

M
(4)
X (t) = 2σ2M

(2)
X (t) + tσ2M

(3)
X (t) + σ2M

(2)
X (t)

= 3σ2M
(2)
X (t) + tσ2M

(3)
X (t)

Hence

M
(r)
X (t) = (r − 1)σ2M

(r−2)
X (t) + tσ2M

(r−1)
X (t)

Using the above, we generate odd and even moments.

HWs/HW_chapter_8/problem_9_chapter_8.mws
HWs/HW_chapter_8/sim.nb


chapter 3. hws 75

E
(
x1) = M

(1)
X (0) = 0

E
(
x2) = M

(2)
X (0) = σ2MX(0) = σ2

etc...

odd moments: Proof by induction., See class notes, Math 502 lecture 10/24/07

even moments:

proof by induction.

First show it is true for the base case n = 1.(base case)

From the above we see this is indeed the case because E(x2) = σ2, which is the same as
saying E(x2n) = (2n)! σ2n

2n(n!) when n = 1

Now assume it is true for some n ≥ 1, i.e. assume that

E
(
x2n) = (2n)! σ2n

2n (n!) (1)

Then we need to show that the relation is true for n+1 (the next even number), i.e. we need
to show that

E
(
x2(n+1)) = (2(n+1))! σ2(n+1)

2(n+1)((n+1)!) (*)

Use the moment generation recursive formula to show the above. since from definition we
know that

E
(
x2(n+1)) = M

2(n+1)
X (0)

But we showed that

M
(r)
X (t) = (r − 1)σ2M

(r−2)
X (t) + tσ2M

(r−1)
X (t) (2)

Then replace r in (2) with 2(n+ 1) we obtain (and setting t = 0)

M
(2(n+1))
X (0) = E

(
x2(n+1))

= (2(n+ 1)− 1)σ2M
(2(n+1)−2)
X (0)

= (2n+ 2− 1)σ2M
(2n+2−2)
X (0)

= (2n+ 1)σ2M
(2n)
X (0)
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But M (2n)
X (0) in the above is just E(x2n) which we assumed in (1) to be (2n)! σ2n

2n(n!) , hence the
above can be written as

E
(
x2(n+1)) = (2n+ 1)σ2 (2n)! σ2n

2n (n!)

But σ2σ2n = σ2(n+1) and (2n+ 1) (2n)! = (2n+ 1)! hence the above becomes

E
(
x2(n+1)) = (2n+ 1)! σ2(n+1)

2n (n!) (3)

But (2n+ 1)! = (2n+2)!
(2n+2)

Hence (3) becomes

E
(
x2(n+1)) = (2n+ 2)! σ2(n+1)

(2n+ 2) 2n (n!)

= (2(n+ 1))! σ2(n+1)

2n× 2n (n!) + 2× 2n (n!)

= (2(n+ 1))! σ2(n+1)

2n+1n (n!) + 2n+1 (n!)

= (2(n+ 1))! σ2(n+1)

2n+1 (n! (n+ 1))

But n! (n+ 1) = (n+ 1)! hence the above becomes

E
(
x2(n+1)) = (2(n+ 1))! σ2(n+1)

2n+1 (n+ 1)!

Compare to (*) we see it is the same. QED
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3.5 Key solutions for HWs
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3.5.1 key solutions for chapter 1
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3.5.2 key solutions for chapter 2
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3.5.3 key solutions for chapter 3
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3.5.4 key solutions for chapter 4
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3.5.5 key solutions for chapter 5
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3.5.6 key solutions for chapter 8
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3.5.7 key solutions for chapter 9
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Answer:

Given:

1. Ri ,Event that it rains on day i

2. Rc
i ,Event that it does not rain on day i

3. P (R0) = p, Probability of rain on day 0

4. P (Ri|Ri−1) = α ,Probability of rain on day i given it rained on day i− 1

5. P
(
Rc

i |Rc
i−1
)
= β ,Probability of no rain on day i given it did not rain on day i− 1

6. Only today’s weather is relevant to predicting tomorrow rain

Find:

Probability of rain in n days and what happen as n → ∞

Solution:

Consider the experiment that generates today’s weather. Hence possible outcomes can be
divided into 2 disjoint events: rain and no rain (A day can either be rainy or not, hence this
division contains all possible outcomes).

Hence
Ω = {R0, R

c
0}

Now using the law of total probability, we write

P (R1) = P (R1|R0)P (R0) + P (R1|Rc
0)P (Rc

0) (1)

But

P (R1|Rc
0) = 1− P (R1|R0)

= 1− β (2)

Note: To proof the above, we can utilize a simple state transition diagram as follows
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Figure 4.2: Problem 1 note

Now, substitute (2) into (1) and given that P (R1|R0) = α and P (R0) = p and P (Rc
0) = 1−p,

then (1) becomes
P (R1) = αp+ (1− β) (1− p) (3)

Now we can recursively apply the above to find probability of rain on the day after tomorrow.
Let R0 → R1 and R1 → R2, hence the above (1) becomes

P (R2) = P (R2|R1)P (R1) + P (R2|Rc
1)P (Rc

1) (4)

Now using (3) for P (R1) , and given that P (R2|R1) = α (This probability does not change,
since we are told only today’s weather is relevant), and given that P (Rc

1) = (1− P (R1)) and
that P (R2|Rc

1) = (1− β), then (4) becomes

P (R2) = α

P (R1)︷ ︸︸ ︷
[αp+ (1− β) (1− p)] + (1− β)

P
(
Rc

1
)︷ ︸︸ ︷

(1− [αp+ (1− β) (1− p)])
= p+ α + β − 2pα− 2pβ − β2 − αβ + pα2 + pβ2 + 2pαβ
= p(1− 2α− 2β + 2αβ) + α + β − αβ + (pα2 + pβ2 − β2)
= p(1− 2α− 2β + 2αβ) + α + β − αβ + [terms with higher powers in α and β]

We see that as we continue with the above process, terms will be generated with the form
(something)×αm and (something)×βr, where the powers m, r are getting larger and larger
as n gets larger. But since α, β < 1, hence all these terms go to zero. So we only need to look
at the terms which do not contain a product of α′s and product of β′s

Hence the above reduces

P (R2) ≈ p(1− 2α− 2β + 2αβ) + α + β − αβ



chapter 4. quizes 218

There is a pattern here, to see it more clearly, I generated more P (Ri) for i = 3, 4, 5, 6, 7
using a small piece of code and removed all terms of higher powers of α, β as described above,
and I get the following table

i P (Ri)
0 p

1 1− β + p(−1 + α + β)
2 α + β − αβ + p(1− 2α− 2β + 2αβ)
3 1− α− 2β + 3αβ + p(−1 + 3α + 3β − 6αβ)
4 2α + 2β − 6αβ + p(1− 4α− 4β + 12αβ)
5 1− 2α− 3β + 10αβ + p(−1 + 5α + 5β − 20αβ)
6 3α + 3β − 15αβ + p(1− 6α− 6β + 30αβ)

Hence the pattern can be seen as the following

P (Rn) = mod (n, 2) + (−1)(n)
⌊n
2

⌋
α + (−1)(n)

⌈n
2

⌉
β + (−1)(n+1)

(
n−1∑
i=1

i

)
αβ+

p
(
(−1)n + (−1)n+1 nα + (−1)n+1 nβ + (−1)n

[
n2 − n

]
αβ
)

Where mod (n, 2) = 0 for even n and 1 for odd n, and
⌊
n
2

⌋
means to round to nearest lower

integer and
⌈
n
2

⌉
means to round upper.

The above is valid for very large n.

As n → ∞ P (Rn) will reach a fixed value (I first though it will always go to 1, but that
turned out not to be the case). I could not find an exact expression for P (Rn) as n → ∞,
but I wrote a small program which simulates the above, and generates a table. Here is a
table for few values as n gets large, these are all for α = .3, β = .6, p = .4, notice that P (Rn)
fluctuates up and down from one day to the next as it converges to its limit.



chapter 4. quizes 219

Figure 4.3: JNJY0F03

Figure 4.4: Problem 2

Given: Conditional probabilities exist

Show: P (A1 ∩ A2 ∩ A3 ∩ · · ·An) = P (A1)+P (A2|A1 ∩ A2)+· · ·+P (An|A1 ∩ A2 ∩ · · · ∩ An−1)

Solution:

Since Conditional probabilities exist, then we know that the following is true

P (X ∩ Y ) = P (X|Y )P (Y )

Let X = An and Y = A1 ∩ A2 ∩ A3 ∩ · · · ∩ An−1 hence the above becomes

P (A1 ∩ A2 ∩ · · ·An) = P (An|A1 ∩ A2 ∩ · · · ∩ An−1)P (A1 ∩ A2 ∩ · · · ∩ An−1)
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Now apply the same idea to the last term above. In other words, we write

P (A1 ∩ A2 ∩ · · · ∩ An−1) = P (An−1|A1 ∩ A2 ∩ · · · ∩ An−2)P (A1 ∩ A2 ∩ · · · ∩ An−2)

We repeat the process until we obtain P (A1 ∩ A2) = P (A2|A1)P (A1)

Hence, putting all the above together, we write

P (A1 ∩ A2 ∩ · · ·An) = P (An|A1 ∩ A2 ∩ · · · ∩ An−1)P (An−1|A1 ∩ A2 ∩ · · · ∩ An−2)
P (An−2|A1 ∩ A2 ∩ · · ·An−3)· · ·P (A2|A1)P (A1)

The above is what is required to show (terms are just rewritten is reverse order from the
problem statement, rearranging, we obtain

P (A1 ∩ A2 ∩ · · ·An) = P (A1)P (A2|A1) · · ·P (An−1|A1 ∩ A2 ∩ · · · ∩ An−2)P (An|A1 ∩ A2 ∩ · · · ∩ An−1)

Figure 4.5: Problem 3

Given:

Axioms of probability:

1. P (Ω) = 1

2. if A ⊂ Ω then P (A) ≥ 0

3. if A,B are disjoint events (i.e. A∩B = ∅) then P (A1 ∪ A2 ∪ A3 ∪ · · · ∪ An) = P (A1)+
P (A2) + · · ·+ P (An)

Show that P (A ∪B) ≤ P (A) + P (B)

Solution:

There are 4 possible cases.

1. A,B are disjoint
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2. A ⊂ B

3. B ⊂ A

4. A,B have some common events between them. In other words A ∩B = C 6= ∅

Case 1: If A,B are disjoint then A ∪B = A+B by set theory. Now apply the probability
operator on both sides we obtain that

P (A ∪B) = P (A+B)

Now, by Axiom 3, P (A+B) = P (A) + P (B) hence the above becomes

P (A ∪B) = P (A) + P (B)

Case 2: If A ⊂ B then A ∪ B = B by set theory. Now apply the probability operator on
both sides we obtain that

P (A ∪B) = P (B)

But P (B) ≤ P (B) + P (A) since A ∈ Ω and so P (A) ≥ 0 by axiom 2. Hence the above
becomes

P (A ∪B) ≤ P (B) + P (A) (0)

Case 3: This is the same as case 2, just exchange A and B

case 4: Since, by set theory
A = A ∩B + A ∩Bc

Then apply Probability operator on both sides

P (A) = P (A ∩B + A ∩Bc)

But by set theory A ∩B is disjoint from A ∩Bc, then by axiom 3 the above becomes

P (A) = P (A ∩B) + P (A ∩Bc) (1)

Similarly, by set theory

B = B ∩ A+B ∩ Ac

Then apply Probability operator on both sides
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P (B) = P (B ∩ A+B ∩ Ac)

But B ∩ A is disjoint from B ∩ Ac, by set theory, then by axiom 3 the above becomes

P (B) = P (B ∩ A) + P (B ∩ Ac) (2)

Now by set theory
A ∪B = A ∩B + A ∩Bc +B ∩ Ac

Apply the probability operator on the above

P (A ∪B) = P (A ∩B + A ∩Bc +B ∩ Ac)

But A ∩B,A ∩Bc, and B ∩ Ac are disjoint by set theory, then above can be written using
axiom 3 as

P (A ∪B) = P (A ∩B) + P (A ∩Bc) + P (B ∩ Ac) (3)

Add (1)+(2)

P (A) + P (B) = P (A ∩B) + P (A ∩Bc) + P (B ∩ A) + P (B ∩ Ac)

subtract the above from (3)

P (A ∪B)− [P (A) + P (B)] = [P (A ∩B) + P (A ∩Bc) + P (B ∩ Ac)]−
[P (A ∩B) + P (A ∩Bc) + P (B ∩ A) + P (B ∩ Ac)]

Cancel terms (Arithmetic)

P (A ∪B)− [P (A) + P (B)] = −P (B ∩ A)

or (algebra)

P (A ∪B) = P (A) + P (B)− P (B ∩ A)



chapter 4. quizes 223

Since B ∩A is an event in Ω then P (B ∩ A) ≥ 0 by axiom 2, hence the above can be written
as

P (A ∪B) ≤ P (A) + P (B) (4)

conclusion: We have looked at all 4 possible cases, and found that P (A ∪B) = P (A)+P (B)
or P (A ∪B) ≤ P (A) + P (B), hence P (A ∪B) ≤ P (A) + P (B)

Note: I tried, really tried, to find a method which would require me to use the hint given in
the problem that if A ⊂ B, then P (A) ≤ P (B) but I did not need to use such a relationship
in the above. But I still show a proof for this identity below

Given: A ⊂ B , Show P (A) ≤ P (B)

proof:

B = A ∪ Ac by set theory

P (B) = P (A ∪ Ac) by applying probability to each side.

But A,Ac are disjoint by set theory, hence P (A ∪ Ac) = P (A) + P (Ac) by axiom 3.

Hence P (B) = P (A) + P (Ac), or P (A) = P (B)− P (Ac)

But by axiom 2, P (Ac) ≥ 0, hence P (A) ≤ P (B), QED

Figure 4.6: Problem 4

Given: X binomial r.v., i.e. P (X = k) =
(
n

k

)
pk(1− p)n−k , Find the mode. This is the value

k for which P (X = k) is maximum

The mode is where P (X) is maximum. Consider 2 terms, when X = k, and X = k − 1,
hence P (X) will be increasing when P (X=k)

P (X=k−1) > 1

But
P (X = k − 1) =

(
n

k − 1

)
p(k−1)(1− p)n−(k−1)
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Hence

P (X = k)
P (X = k − 1) =

(
n

k

)
pk(1− p)n−k

(
n

k − 1

)
p(k−1) (1− p)n−(k−1)

=
n!

(n−k)! (k)! p
k(1− p)n−k

n!
(n−k+1)! (k−1)! p

(k−1) (1− p)n−(k−1)

= (n− k + 1)! (k − 1)!
(n− k)! (k)!

(1− p)
p

= (n− k)
k

(1− p)
p

so P (X) is getting larger when (n−k)
k

(1−p)
p

> 1 or

(n− k) (1− p) > kp

n− np− k + kp > kp

np+ p > k

p(1 + n) > k

So as long as k < p(1 + n), pmf is increasing. Since k is an integer, then we need the largest
integer such that it is < p(1 + n), hence

k = bp(1 + n)c

Figure 4.7: Problem 5

Given:

P (D) = 1/1000

members are affected independently

Find: probability 2 individuals are affected in population of size 100,000

part(a)
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In Binomial random variable we ask: How many are infected in a trial of length n given that
the probability of being infected in each trial to be p. Here we view each trial as testing an
individual. Consider it a ’hit’ if the individual is infected. The number of trials is 100, 000,
which is n, and p = 1/1000.

Therefore, X =how many are infected in population of 100000

Hence the probability of getting k = 2 hits is, using binomial r.v. is (k = 2 in this case)

P (X = 2) =
(
n

k

)
pk(1− p)n−k

or numerically

P (X = 2) =
(
100000

2

)
0.0012(1− 0.001)100000−2

(b)Using Poisson r.v. Poisson is a generalization of Binomial. X is the number of successes in
infinite number of trials, but with the probability of success in each one trial going to zero
in such a way that np = λ .We compute p(X = k) = λk

k! e
−λ , k = 0, 1, 2, ....

Hence here X = how many are infected as n gets very large and p , the probability of infection
in each individual goes very small in such a way to keep np fixed at a parameter λ. Since here
n is large and p is small, we approximate binomial to Poisson using λ = np = 100000×0.001 =
100.0

Hence
p(X = 2) = 1002

2! e−100

ps. computing a numerical value for the above, shows that using Binomial model, we obtain
P (X = 2)
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Figure 4.8: Binomial model

and using Poisson model

Figure 4.9: Poisson model

I am not sure, these are such small values, this means there is almost no chance of finding 2
individuals infected in a population of 100,000? I would have expected to see a much higher
probability than the above. I do not see what I am doing wrong if anything.
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4.1.1 Graded
16/20

QUIZ 1 ~IATH 502 B

Name (pI a:-.(' print) Na_ss_er_A_bb_3Sl_' _

1. C()n~id I' a ~<'<Jl\('J1('(' of days. and I t R, d n t thr ('\. nt thaI it raill~ Oil day i. L('l
P(Ro) = p (rain IOd v). P(RdR,-1 = n .• lld P(RfIR~-d = 3. Upp05 further thM
only today\ w alh I' is r('1 \'am t pI' Helin tom rr w',: that i~. P(R,IR,_I n··· .nRo) =
P(R,IR.-d. \rhat i~ thl' pr babilit\' that it rains 71 c1ay~ IT m n w? \\"hat happ ll~ as II

approachr:- illllllit\'"!

Answer:
Given:

1. ~ ,Event that it rains on day i

2. R:i ,Event that it does not rain on day i

3. P (~) = p, Probability of rain on day 0

4. P (~I~-l) = a ,Probability of rain on day i given it rained on day i - 1

5. P (RilR:i-l) = (3 ,Probability of no rain on day i given it did not rain on day i - 1

6. Only today's weather is relevant to predicting tomorrow rain

Find:
Probability of rain in n days and what happen as n - 00

Solution:
Consider the experiment that generates today's weather. Hence possible outcomes can be

,,--... divided into 2 disjoint events: rain and no rain (A day can either be rainy or not, hence this
division contains all possible outcomes).

Hence
n={~,R(;}

Now using the law of total probability, we write

But

P (R11R(;) = 1- P (Rll~)

=1-(3

Note: To proof the above, we can utilize a simple state transition diagram as follows

Today Tomorrow

(1)

(2)

These are the only 2 possible
state transitions path from RO to
R1. hence the probability of
being on either of them must be
1 given that we started from
state RD. Hence if the probability
of being on one path is known.
the probability of being on the
second path must be 1 minus
that probability of being on the
first path.

1
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Now, substitute (2) into (1) and given that P (R1IRo) = a and P (Ro) = p and P (RO) = 1-p,
then (1) becomes

P(R1 ) = ap+ (1- (3) (1- p) (3)

Now we can recursively apply the above to find probability of rain on the day after tomorrow.
Let Ro ~ R1 and R1~ R2 , hence the above (1) becomes

P (R2 ) = P (R2 IR1) P (R1) + P (R21KJ.) P (R~) (4)

Now using (3) for P (R1) , and given that P (R2 IR1) = a (This probability does not change,
since we are told only today's weather is relevant), and given that P (RJ.) = (1 - P (R1)) and that
P (R2 IRJ.) = (1 - (3), then (4) becomes

P(Rl) p(R1)

P (R2) = a[ap + (1 _A(3) (1 - p)] + (1 - (3) '(1 - [ap + (1"'"-- (3) (1 - p)])'

= p + a + (3 - 2pa - 2p(3 - (32 - a(3 + pa2+ p(32 + 2pa(3

= p (1 - 2a - 2(3 + 2a(3) + a + (3 - a(3 + (pa2 + p(32 - (32)

= P (1 - 2a - 2(3 + 2a(3) + a + (3 - a(3 + [terms with higher powers in a and (3]

We see that as we continue with the above process, terms will be generated with the form
(something)xam and (something)x(3T, where the powers m, r are getting larger and larger as n
gets larger. But since a, (3 < 1, hence all these terms go to zero. So we only need to look at the
terms which do not contain a product of a's and product of (3'S) l I ,

Hence the above reduces "C' V\ 0....~ 1 N 0
-=t.v'\ .:'i 45<-.~,' c...~&) f;\a--. ,
~ ~~ 5 ~ 'b<> P (R2) ~ p (1 - 2a - 2(3 + 2a(3) + a + (3 - a(3
~ I lo~ -\-l...e.. J'"\.~ ~~1..
There is a pattern here, to see it more clearly, I generated more P (14) for i = 3,4,5,6,7 using

a small piece of code and removed all terms of higher powers of a, (3 as described above, and I get
the following table

2 P(14)
o p
1 1 - (3 + p (-1 + a + (3)
2 a + (3 - a(3 + p (1 - 2a - 2(3 + 2a(3)
3 1 - a - 2(3 + 3a(3 + p (-1 + 3a + 3(3 - 6a(3)
4 2a + 2(3 - 6a(3 + p (1 - 4a - 4(3 + 12a(3)
5 1 - 2a - 3(3 + lOa(3 + p (-1 + 5a + 5(3 - 20a(3)
6 3a + 3(3 - 15a(3 + p (1 - 6a - 6(3 + 30a(3)

Hence the pattern can be seen as the following

p (R,,) ~ mod (n, 2)+(_1)(n) l~j ,,+ (_1)(n) r~113+(_1)(n+1) (~}:tI3+

p ((-It + (-It+! na + (-It+! n(3 + (-It [n2
- n] a(3)

2

------------- -
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Where mod (n, 2) = 0 for even n and 1 for odd n, and l~J means to round to nearest lower
integer and I~l means to round upper.

The above is valid for very large n.
As n --4 00 P (Rn) will reach a fixed value (I first though it will always go to 1, but that turned

out not to be the case). 1 could not find an exact expression for P (Rn) as n --4 00, but 1 wrote
a small program which simulates the above, and generates a table. Here is a table for few values
as n gets large, these are all for Q = .3, (3 = .6,p = .4, notice that P (R",) fluctuates up and down
from one day to the next as it converges to its limit.

In[29]:= TableForm [r, TableHeadings .... {None, {lin", "p (Rn ) "}} 1

Out[29]/fTableForrrF
n P (Rn )

o 0.4
1 0.28
2 0.316
3 0.3052
4 0.30844
5 0.307468
6 0.30776
7 0.307672
8 0.307698
9 0.30769
10 0.307693
11 0.307692
12 0.307692
13 0.307692
14 0.307692
15 0.307692
16 0.307692
17 0.307692

3
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2 h w that if th conditional proba

Given: Conditional probabilities exist
Show: P (AI n A2 n A3 n· .. An) = P (AI)+P (A2 IAI n A2)+· . ·+P (AnIAI n A2 n ... n An-d
Solution:
Since Conditional probabilities exist, then we know that the following is true

P(X n Y) = P(XIY) P (Y)

Let X = An and Y = Al n A2 n A3 n ... n An- I hence the above becomes

P (AI n A2 n ... An) = P (AnIAI n A2 n ... nAn-I) P (AI n A2 n ... nAn-I)

Now apply the same idea to the last term above. In other words, we write

We repeat the process until we obtain P (AI n A2 ) = P (A2 IAI ) P (Ad
Hence, putting all the above together, we write

P (AI n A2 n··· An) = P (AnIAI n A2 n··· n An-d P (An-IIAI n A2 n··· n An- 2 )

P (An- 2 IAI n A2 n ... An- 3 ) ..• P (A2 IAI ) P (AI)

The above is what is required to show (terms are just rewritten is reverse order from the
problem statement, rearranging, we obtain

P (AI n A2 n··· An) = P (AI) P (A2 IAI )··· P (An-IIAI n A2 n··· n An-2) P (AnIAI n A2 n··· nAn-I)

QED

4
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3. Let A and B be arbitrary eyents. Use the three a.xioms of probability to . how that

P(.4 U B) :5 P(A) + P(B).

Identify the aXiom(s) that you lise at· eaeh step. You are not allowed to lise any theorems.
[Hint: One way to show this i. to first show that if C and D are event.s such that C c D.
then P(C) :5 P(D). Then. use this result to prove the result in the above display equation.]

~~+/L~
~~ ~keJf-

o~. '-(0 V- ~rJJL

J-O-AL- ~~ f1()~ pro /; t::: (
A n B = 0) then P (AI U A2 UA3 U... UAn) = P (AI) +

Given:
Axioms of probability:

1. P (0) = 1

2. if A c 0 then P (A) ~ 0

3. if A, B are disjoint events (i.e.
P (A2 ) + ... + P (An)

Show that P (A U B) ~ P (A) + P (B)
Solution:
There are 4 possible cases.

--I

1. A, B are disjoint

2. AcB

3. BcA

set theory. Now apply the probability

~(A J-r?<eJ
')., P(AU =P(A+B) ~(~V~)==~'

Now, by Axiom 3, P (A0l) = P (A) + P (B) hence the above becomes

V P(AUB) = PtA) +P(B)

4. A, B have some common events b~l\'e€mitel(l)

Case 1: If A, B are disjoint t
operator on both sides we obtain t

Case 2: If A c B then A U B = B by set theory. Now apply the probability operator on both
sides we obtain that

But P(
becomes

b \~ v __- -P-bl--I:,J
~ P(B) + P(A) since A E 0

= P(B)

d so P (A)., ~ 0 by axiom 2. Hence the above

IP (A U B) ~ P (B) + P (A) I
Case 3: This is the same as case 2, just exchange A and B
case 4: Since, by set theory

(0)

A=AnB+AnBC

5
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~?

Then apply Probability operator on b~o~t~~- - __
~

P (A) = P(A n B + A nBC)

But by set theory A n B is disjoin:iNfm:I;LCl..LLt£:..,.JJl4~b'5'~

Similarly, by set theory

P (A) = P (A n B) + P (A nBC)

=BnA;;;:DC
(1)

P(B) = p(Bn + nAC)

But B n A is disjoint from B n AC, by set theory, then by axiom 3 the above becomes

P (B) = P (B n A) + P (B n AC)

Now by set theory

(2)

Au B = An B + A n BC+ B n AC

Apply the probability operator on the ahOll~--_~

P(A u B) = p(An B +Aj)

But A n B, A n BC, and B n AC are ISJomt by set theory, then above can be written using
axiom 3 as

P(A U B) = p(An B) + p(An BC) + P(B nAC)

Add (1)+(2)

P (A) + P (B) = P (A n B) + P (A nBC) + P (B n A) + P (B n AC)

subtract the above from (3)

P (A U B) - [P (A) + P (B)] = [P (A n B) + P (A nBC) + P (B n AC)] -

[P (A n B) + P (A nBC) + P (B n A) + P (B n AC
)]

Cancel terms (Arithmetic)

P(A U B) - [P(A) + P(B)] = -P(B n A)

or (algebra)

(3)

P (A U B) = P (A) + P (B) - P (B n A)

Since B n A is an event in n then P (B n A) 2:: 0 by axiom 2, hence the above can be written
as

/ IP (A U B) :S P (A) + P (B) I

6

(4)

--- --------------
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conclusion: We have looked at all 4 possible cases, and found that P (A U B) = P (A) +P (B)
or P (A U B) ~ P (A) + P (B), hence P (A U B) ~ P (A) + P (B)

Note: I tried, really tried, to find a method which would require me to use the hint given in
r-.... the problem that if A c B, then P (A) ~ P (B) but I did not need to use such a relationship in

the above. But I still show a proof for this identity below
Given: A c B , Show P(A) ~ P(B)
proof:
B = Au AC by set theory
P (B) = P (A U AC) by applying probability to each side.
But A, AC are disjoint by set theory, hence P (A U AC) = P (A) + P (AC) by axiom 3.
Hence P(B) = P (A) + P (AC), or P (A) = P (B) - P (AC)
But by axiom 2, P (AC) 2:: 0, hence P (A) ~ P (B), QED

7
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4. Let X '" bil1omial(n,p). Derive the mode of the probability mass function of X.

Given: X binomial r.v., i.e. P (X = k) = (~) pk (1 - pt-k , Find the mode. This is the value

k for which P (X = k) is maximum
The mode is where P (X) is maximum. Consider 2 terms, when X = k, and X = k -1, hence

P (X) will be increasing when pf1:;:~) > 1
But

P (X = k - 1) = ( n ) p(k-l) (1 _ pt-(k-l)
k-1

Hence

(
n
k

) pk (1 - pt-k
P(X = k)

-~---7-~------

P (X = k - 1) (k : 1) p(k-l) (1 _ pt-(k-l)

(n - k + 1)! (k - 1)' (1- p)
-

(n - k)! (k)! p

(n - k) (1 - p)
k p

so P (X) is getting larger when (n-:) (1;p) > 1 or

n! k (1 )n-k
(n-k)! (k)! p - P
n! (k-l) (1 )n-(k-l)

(n-k+l)! (k-l)! p - P

(n - k)(1 - p) > kp

n - np - k + kp > kp

np+p> k

p(1+n) > k

So as long as k < p (1 + n), pmf is increasing. Since k is an integer, then we need the largest
integer such that it is < p (1 + n), hence

Ik= [p(1+n)J I

8
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Out[6]=

5. Suppose t.hat a rare disease has an incidence of 1 in 1000. Assuming that member. of the
population are affected independently, Find the probability that two individuals are affect.ed
in a population of 100.000 by (a) using the relevant binomial random variable. and a) using
the relevant Poisson random variable. In each ca. e identify the random variable and its
distribution clearly. [Leave yOUl' ,olutions in expression formsJ.

Given:
P (D) = 1/1000
members are affected independently
Find: probability 2 individuals are affected in population of size 100,000
part(a)
In Binomial random variable we ask: How many are infected in a trial of length n given that the

probability of being infected in each trial to be p. Here we view each trial as testing an individual.
Consider it a 'hit' if the individual is infected. The number of trials is 100,000, which is n, and
p = 1/1000.

Therefore, IX =how many are infected in population of 100000 I
Hence the probability of getting k = 2 hits is, using binomial r.v. is (k = 2 in this case)

or numerically

P (X = 2) = (1O~000) 0.0012 (1 _ 0.001)100000-2

(b)Using Poisson r.v. Poisson is a generalization of Binomial. X is the number of successes in
infinite number of trials, but with the probability of success in each one trial going to zero in such
a way that np = A .We compute p(X = k) = ~~ e-A ,k = 0,1,2, ....

Hence here X = how many are infected as n gets very large and p , the probability of infection
in each individual goes very small in such a way to keep np fixed at a parameter A. Since here n is
large and p is small, we approximate binomial to Poisson using A = np = 100000 x 0.001 = 100.0

Hence
Ip (X = 2) = ~e-100 I

ps. computing a numerical value for the above, shows that using Binomial model, we obtain
P(X = 2)

In[5]:= n =100 000; k =2; P =O. 001 ;

Binomial [n, k] pk (1 _ p) n-k

1.77279xl0-40

and using Poisson model

9

---------- -
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In[12]:=

Out[13]=

A =np;

Ak

- Exp[-A]
k!

1.86004xlO-40

I am not sure, these are such small values, this means there is almost no chance of finding
2 individuals infected in a population of 100,000? I would have expected to see a much higher
probability than the above. I do not see what I am doing wrong if anything.

10
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4.2 Quiz 2

Local contents
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Figure 4.10: Problem one

By definition,

Γ(z) =
∫ ∞

0
tz−1e−tdt

Hence
Γ
(n
2

)
=
∫ ∞

0
t
(
n
2−1

)
e−tdt

When n = 1, we are told that

Γ
(
1
2

)
=
∫ ∞

0
t
( 1
2−1

)
e−tdt =

∫ ∞

0
t
(
− 1

2
)
e−tdt =

√
π

For n = 3 , we have

Γ
(
3
2

)
=
∫ ∞

0
t
( 3
2−1

)
e−tdt

=
∫ ∞

0
t
( 1
2
)
e−tdt

Now do integration by parts,
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Γ
(
3
2

)
=
∫ ∞

0

u︷︸︸︷
t
( 1
2
) dv︷ ︸︸ ︷
e−tdt

=
[
t
1
2
(
−e−t

)]∞
0
−
∫ ∞

0

1
2t

(
− 1

2
)(
−e−t

)
dt

= −
[
t
1
2 e−t

]∞
0
+
∫ ∞

0

1
2t

(
− 1

2
)
e−tdt

But
[
t
1
2 e−t

]∞
0

= [0− 0] = 0 and the above becomes

Γ
(
3
2

)
= 1

2

∫ ∞

0
t
(
− 1

2
)
e−tdt

But
∫∞
0 t

(
− 1

2
)
e−tdt = Γ

(1
2

)
, hence the above becomes

Γ
(3
2

)
= 1

2Γ
(1
2

)
Now do the same for n = 5

Γ
(
5
2

)
=
∫ ∞

0
t
( 5
2−1

)
e−tdt

=
∫ ∞

0

u︷︸︸︷
t
( 3
2
) dv︷ ︸︸ ︷
e−tdt

= −
[
t
3
2 e−t

]∞
0
−
∫ ∞

0

3
2t

( 1
2
)(
−e−t

)
dt

= 3
2

∫ ∞

0
t
( 1
2
)
e−tdt

But
∫∞
0 t

( 1
2
)
e−tdt we found from above to be Γ

(3
2

)
, hence

Γ
(
5
2

)
= 3

2Γ
(
3
2

)

But Γ
(3
2

)
= 1

2Γ
(1
2

)
from above, hence
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Γ
(
5
2

)
= 3

2
1
2Γ
(
1
2

)
= 3

2
1
2
√
π

Continuing this way, we find that Γ
(7
2

)
= 5

2
3
2
1
2Γ
(1
2

)
, and hence in general

Γ
(n
2

)
= (n− 2)

2
(n− 4)

2
(n− 6)

2 · · · 52
3
2
1
2
√
π (1)

Now,

(n− 1)! = (n− 1) (n− 2) (n− 3) (n− 4) (n− 5) (n− 6) · · · 5× 4× 3× 2× 1

Hence from above we see that

(n− 2) (n− 4) (n− 6) · · · 5× 3× 1 = (n− 1)!
(n− 1) (n− 3) (n− 5) · · · 4× 2× 1

Therefore (1) can be written as

Γ
(n
2

)
=
(

(n− 1)!
(n− 1) (n− 3) (n− 5) · · · 4× 2× 1

) There are n−1
2 such terms︷ ︸︸ ︷(

1
2
1
2
1
2 · · ·

1
2
1
2

) √
π

= (n− 1)!
(n− 1) (n− 3) (n− 5) · · · 4× 2

1
2
(
n−1
2

)√π (2)

But
2
(
n−1
2

)
=
(
2n−1) (2−n−1

2

)
= 2n−1

2n−1
2

Hence (2) becomes

Γ
(n
2

)
=
(

(n− 1)!
1

2
n−1
2

(n− 1) (n− 3) (n− 5) · · · 4× 2

)
1

2n−1

√
π

But there are n−1
2 terms in the expression (n− 1) (n− 3) (n− 5) · · · 4× 2 in the denominator

above and we have n−1
2 number of 1

2 sitting there, which we can distribute now below each
terms to obtain
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Γ
(n
2

)
=
(

(n− 1)!
(n−1)

2
(n−3)

2
(n−5)

2 · · · 4
2 ×

2
2

)
1

2n−1

√
π (3)

But (
n− 1
2

)
! =

(
n− 1
2

)(
n− 1
2 − 1

)(
n− 1
2 − 2

)
· · · × 4× 3× 2× 1

=
(
n− 1
2

)(
n− 3
2

)(
n− 5
2

)
· · · × 4× 2

Compare the above to the denominator term in (3) we see it is the same. Hence (3) can be
written as

Γ
(
n
2

)
= (n−1)!(

n−1
2

)
!

1
2n−1

√
π

Which is what we are asked to show.

Figure 4.11: Problem 2

Figure 4.12: p2PDF

Since U is continuous r.v., we start with the CDF of Z
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FZ(z) = P (Z ≤ z)
= P

(
U2 ≤ z

)
= P

(
−
√
z ≤ U ≤

√
z
)

(1)

But since F ′
U(u) = fU(u), then we know that P (a ≤ U ≤ b) =

∫ b

a
fU(x) dx → FU(b)− FU(a)

Hence RHS of (1) becomes

FZ(z) = FU

(√
z
)
− FU

(
−
√
z
)

Figure 4.13: p2CDF

Therefore, taking derivatives with respect to z we obtain

fZ(z) = fU
(√

z
) d

dz

√
z − fU

(
−
√
z
) d

dz

(
−
√
z
)

= 1
2z

−1
2 fU

(√
z
)
+ fU

(
−
√
z
) 1
2z

−1
2

= 1
2z

−1
2
(
fU
(√

z
)
+ fU

(
−
√
z
))

Since U is uniform, hence fU(a) = fU(−a), hence the above becomes
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fZ(z) =
1
2z

−1
2
(
2fU
(√

z
))

= 1√
z
fU
(√

z
)

Now I need to determine the limits of fZ(z) and the shape. fU is defined for real arguments
from −1 to +1. i.e. fU is real valued function of real arguments. Hence if z was negative
then

√
z will be complex, and so this will not be allowed. Hence we have to restrict z ≥ 0.

But now we observe that z = 0 is not possible, since we will have 1
0 term, so this means z is

strictly larger than zero. So

fZ(z) =
1√
z
fU
(√

z
)

z > 0

But we know that fU(x) = 1
2 for up to x = 1, hence this means when

√
z > 1 then fU

(√
z
)
= 0,

when means when z > 1 then fU
(√

z
)
= 0

Hence we now write

fZ(z) =


1√
z
1
2 0 < z ≤ 1

0 z > 1
undefined z ≤ 0

Here is a plot

Figure 4.14: p2PDFfz
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Figure 4.15: Problem 3

I explain the idea behind obtaining a discrete random number from a continues random
number by the following diagram below. We assume that the discrete random number
belongs to some distribution. In this example, we are told what the distribution is. We know
that the CDF for geometric random variable is given by

FK(k) = 1− (1− p)k

Figure 4.16: CDF for geometric random variable

We see from the above diagram, that once we are given u we need to find k which satisfy the
following identity

FK(k − 1) < u ≤ FK(k)

Or in other words
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1− (1− p)k−1 < u ≤ 1− (1− p)k

The specific discrete value k which will satisfy the above, is the random variable we want,
which belong to the geometeric distribution.

Figure 4.17: geometeric distribution

Now when u = 0.0153, and since p = 1
3 , we have

1−
(
1− 1

3

)k−1

< 0.0153 ≤ 1−
(
1− 1

3

)k

for k = 1, we have

0 < 0.0153 ≤ 0.333 33 Y ES

Hence k = 1 is the random variable associated with u = 0.0153

Now let us do u = 0.7468

for k = 1, we have

0 < 0.7468 ≤ 0.333 33 NO

try k = 2
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1−
(
1− 1

3

)1

< 0.7468 ≤ 1−
(
1− 1

3

)2

0.333 33 < 0.7468 ≤ 0.555 56 NO

try k = 3

1−
(
1− 1

3

)2

< 0.7468 ≤ 1−
(
1− 1

3

)3

0.555 56 < 0.7468 ≤ 0.703 7 NO

try k = 4

1−
(
1− 1

3

)3

< 0.7468 ≤ 1−
(
1− 1

3

)4

0.703 7 < 0.7468 ≤ 0.802 47 Y ES

Hence k = 4 is the random variable associated with u = 0.7468

Now let us do u = 0.4451

We see from the above, that this will have k = 2 since for k = 2 the intervals is 0.333 33 <

u ≤ 0.555 56

Hence k = 2 is the random variable associated with u = 0.4451

Now let us do u = 0.9318

From above, we see that this will have a k larger than 4, so we do not need to try from the
start, we can start trying from k = 5

try k = 5

1−
(
1− 1

3

)4

< 0.9318 ≤ 1−
(
1− 1

3

)5

0.802 47 < 0.9318 ≤ 0.868 31 NO

try k = 6
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1−
(
1− 1

3

)5

< 0.9318 ≤ 1−
(
1− 1

3

)6

0.868 31 < 0.9318 ≤ 0.912 21 NO

try k = 7

1−
(
1− 1

3

)6

< 0.9318 ≤ 1−
(
1− 1

3

)7

0.912 21 < 0.9318 ≤ 0.941 47 Y ES

Hence k = 7 is the random variable associated with u = 0.9318

Hence result is

u k

0.0153 1
0.4451 2
0.7468 4
0.9318 7

of course one would write a program to do this.

Figure 4.18: Problem 4

(a)

Let P (xi = ni) means probability of player i winning ni rounds.

We have 3 players, and a total of 10 rounds. Let the players be called x1, x2, x3. Let the
number of games WON by x1 be n1, and number of games won by x2 be n2, and number of
games won by x3 be n3.

Since we have 10 rounds, then we must have 10 wins as well. (some one must win). Hence
we have 10 wins and 3 ways to split it, where each ’bucket’ is of different size. So this is a
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multi set selection. called multinomial in the book using proposition B in chapter 1, we see

that the total number of ways the games can be won is
(

10
n1n2n3

)
But we need to find the probability of each one such combination. So we need to multiply
the above by the probability each player wins the number of the games they happened to
win, which is P (xi = ni) = pni , but p = 1

3 for each player to win a round. Hence we write

P (x1 = n1, x2 = n2, x3 = n3) =
(

10
n1n2n3

)(
1
3

)n1 (1
3

)n2 (1
3

)n3

= 10!
n1! n2! n3!

(
1
3

)n1+n2+n3

= 10!
n1! n2! n3!

(
1
3

)10

So the above is the joint probability that p1 wins n1 rounds and p2 wins n2 rounds and p3
wins n3 rounds.

(b)We need to find P (x1 = n1) , i.e. the probability of first player winning n1 rounds.

P (x1 = n1) =
∑

n2=0,1,···10
n3=0,1,···10

P (x1 = n1, x2 = n2, x3 = n3)

To simplify, let me write P (n1, n2, n3) instead, where the position of the n implies the player.
So p(0, 1, 9) means player one wins zero rounds and player 2 wins 1 round and player 3 wins
9 rounds.

So the above becomes

P (x1 = n1) =
∑

n2=0,1,···10
n3=0,1,···10

P (n1, n2, n3)

But since n1 = 10− (n2 + n3) we see that we only need to count those terms in the above
sum when this is true. i.e. we do not need to count a term such as p(1, 0, 0) since this is zero
probability of happening. Now we write

P (x1 = n1) = P (n1, 10− n1, 0) + P (n1, 9− n1, 1) + P (n1, 8− n1, 2) + · · ·P (n1, 0, 10− n1)
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For example,

P (x1 = 0) = P (0, 10, 0) + P (0, 9, 1) + P (0, 8, 2) + P (0, 7, 3) + P (0, 6, 4) + P (0, 5, 5)+

P (0, 4, 6) + P (0, 3, 7) + P (0, 2, 8) + P (0, 1, 9) + P (0, 0, 10)

But P (0, 10, 0) = P (0, 0, 10) and P (0, 9, 1) = P (0, 1, 9), etc.. so the above can be written as

P (x1 = 0) = 2P (0, 10, 0) + 2P (0, 9, 1) + 2P (0, 8, 2) + 2P (0, 7, 3) + 2P (0, 6, 4) + P (0, 5, 5)

= 2 10!
0! 10! 0!

(
1
3

)10

+ 2 10!
0! 9! 1!

(
1
3

)10

+ 2 10!
0! 8! 2!

(
1
3

)10

+

2 10!
0!7! 3!

(
1
3

)10

+ 2 10!
0! 6! 4!

(
1
3

)10

+ 10!
0! 5! 5!

(
1
3

)10

= 1. 734 2× 10−2

and

P (x1 = 1) = P (1, 9, 0) + P (1, 8, 1) + P (1, 7, 2) + P (1, 6, 3) + P (1, 5, 4) + P (1, 4, 5)
+ P (1, 3, 6) + P (1, 2, 7) + P (1, 1, 8) + P (1, 0, 9)

= 2P (1, 9, 0) + 2P (1, 8, 1) + 2P (1, 7, 2) + 2P (1, 6, 3) + 2P (1, 5, 4)

= 2 10!
1! 9! 0!

(
1
3

)10

+ 2 10!
1! 8! 1!

(
1
3

)10

+ 2 10!
1! 7! 2!

(
1
3

)10

+ 2 10!
1!6! 3!

(
1
3

)10

+ 2 10!
1! 5! 4!

(
1
3

)10

= 8. 670 8× 10−2

and

P (x1 = 2) = P (2, 8, 0) + P (2, 7, 1) + P (2, 6, 2) + P (2, 5, 3) + P (2, 4, 4) + P (2, 3, 5)+
P (2, 2, 6) + P (2, 1, 7) + P (2, 0, 8)

= 2P (2, 8, 0) + 2P (2, 7, 1) + 2P (2, 6, 2) + 2P (2, 5, 3) + P (2, 4, 4)

= 2 10!
2! 8! 0!

(
1
3

)10

+ 2 10!
2! 7! 1!

(
1
3

)10

+ 2 10!
2! 6! 2!

(
1
3

)10

+ 2 10!
2!5! 3!

(
1
3

)10

+ 10!
2! 4! 4!

(
1
3

)10

= 0.195 09
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and

P (x1 = 3) = P (3, 7, 0) + P (3, 6, 1) + P (3, 5, 2) + P (3, 4, 3) + P (3, 3, 4)+
P (3, 2, 5) + P (3, 1, 6) + P (3, 0, 7)

= 2P (3, 7, 0) + 2P (3, 6, 1) + 2P (3, 5, 2) + 2P (3, 4, 3)

= 2 10!
3! 7! 0!

(
1
3

)10

+ 2 10!
3! 6! 1!

(
1
3

)10

+ 2 10!
3! 5! 2!

(
1
3

)10

+ 2 10!
3!4! 3!

(
1
3

)10

= 0.260 12

and

P (x1 = 4) = P (4, 6, 0) + P (4, 5, 1) + P (4, 4, 2) + P (4, 3, 3) + P (4, 2, 4) + P (4, 1, 5) + P (4, 0, 6)
= 2P (4, 6, 0) + 2P (4, 5, 1) + 2P (4, 4, 2) + P (4, 3, 3)

= 2 10!
4! 6! 0!

(
1
3

)10

+ 2 10!
4! 5! 1!

(
1
3

)10

+ 2 10!
4! 4! 2!

(
1
3

)10

+ 10!
4!3! 3!

(
1
3

)10

= 0.227 61

and

P (x1 = 5) = P (5, 5, 0) + P (5, 4, 1) + P (5, 3, 2) + P (5, 2, 3) + P (5, 1, 4) + P (5, 0, 5)
= 2P (5, 5, 0) + 2P (5, 4, 1) + 2P (5, 3, 2)

= 2 10!
5! 5! 0!

(
1
3

)10

+ 2 10!
5!4! 1!

(
1
3

)10

+ 2 10!
5! 3! 2!

(
1
3

)10

= 0.136 56

and
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P (x1 = 6) = P (6, 4, 0) + P (6, 3, 1) + P (6, 2, 2) + P (6, 1, 3) + P (6, 0, 4)
= 2P (6, 4, 0) + 2P (6, 3, 1) + P (6, 2, 2)

= 2 10!
6! 4! 0!

(
1
3

)10

+ 2 10!
6!3! 1!

(
1
3

)10

+ 10!
6! 2! 2!

(
1
3

)10

= 5. 690 2× 10−2

and

P (x1 = 7) = P (7, 3, 0) + P (7, 2, 1) + P (7, 1, 2) + P (7, 0, 3)
= 2P (7, 3, 0) + 2P (7, 2, 1)

= 2 10!
7! 3! 0!

(
1
3

)10

+ 2 10!
7!2! 1!

(
1
3

)10

= 1. 625 8× 10−2

and

P (x1 = 8) = P (8, 2, 0) + P (8, 1, 1) + P (8, 0, 2)
= 2P (8, 2, 0) + P (8, 1, 1)

= 2 10!
8! 2! 0!

(
1
3

)10

+ 10!
8!1! 1!

(
1
3

)10

= 3. 048 3× 10−3

and

P (x1 = 9) = P (9, 1, 0) + P (9, 0, 1)
= 2P (9, 1, 0)

= 2 10!
9! 1! 0!

(
1
3

)10

= 3. 387× 10−4

and
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P (x1 = 10) = P (10, 0, 0)

= 10!
10! 0! 0!

(
1
3

)10

= 1. 693 5× 10−5

Here is a plot of the marginal probability for player 1 winning n rounds

Figure 4.19: marginal probability for player 1

Figure 4.20: Problem 5
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(a)

fY (y) =
∫ ∞

0
f(x, y) dx

=
∫ ∞

0

1
8
(
x2 − y2

)
e−xdx

Integrate by parts, dv = e−xdx, u = (x2 − y2), hence du = 2x and v = −e−x, so we obtain

fY (y) =
1
8

{[(
x2 − y2

) (
−e−x

)]∞
0 −

∫ ∞

0
(2x)

(
−e−x

)
dx

}
= 1

8

{
−
[(
x2 − y2

) (
e−x
)]∞

0 + 2
∫ ∞

0
xe−xdx

}
= 1

8

{
−
[
0 + y2

]
+ 2

∫ ∞

0
xe−xdx

}

Do integration by parts again, dv = e−xdx, u = x, hence

fY (y) =
1
8

{
−y2 + 2

[(
x
(
−e−x

))∞
0 −

∫ ∞

0
−e−xdx

]}
= 1

8

{
−y2 + 2

[
−
(
xe−x

)∞
0 +

∫ ∞

0
e−xdx

]}
= 1

8
{
−y2 + 2

[
0 +

[
−e−x

]∞
0

]}
= 1

8
{
−y2 + 2[−[0− 1]]

}
= 1

8
{
−y2 + 2

}
Hence

fY (y) = 1
8(2− y2)

(b)The hard part is to determine the region to integrate. The following is the needed region
which satisfy P (X + Y ≤ 1) and 0 ≤ x ≤ ∞ and −x ≤ y ≤ x
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Figure 4.21: region

For the top region,

I1 =
∫ x=1

x=0

∫ y=1

y=1−x

1
8
(
x2 − y2

)
e−xdydx

and for the bottom region

I2 =
∫ x=2

x=1

∫ y=−x

y=0

1
8
(
x2 − y2

)
e−xdydx

Hence

P (X + Y ≤ 1) =
∫ x=1
x=0

∫ y=1
y=1−x

1
8(x

2 − y2) e−xdydx+
∫ x=2
x=1

∫ y=−x

y=0
1
8(x

2 − y2) e−xdydx



chapter 4. quizes 254

4.2.1 Graded
14/20

=
ql"11. ::! ~ LUll r,1I2 A13 L,JI :!fH17

'-----'

Naill<' i 1'1,'"'''' jlrilill Nasser Abbasi

1. I "•. I Ill' f;\( I 111;11 r; I 21 = /:T III "lIll\\" Ilwl jf II b ;IIJ "dd i1Ji'''~:''r. 11"'1'

r(n!2) = l~ill -I J~
'2"-1 (";1)'"

By definition,

r (z) = 100

tZ-1e-tdt

Hence

When n = 1, we are told that

r (~) = 100

t(~-l)e-tdt

'--"

\-/

r (~) =100

tU-l)e-tdt =100

t(-~)e-tdt= vn
For n = 3 , we have

r (~) = 100

t(~-l)e-tdt

= 100

t(~)e-tdt

Now do integration by parts,

(3) roo~~r "2 = Jo t(~)e-tdt

= [d (_e-t)] ~ - 100

~t(-!) (_e-t) dt

= - [de-t]~ +100

~t(-~)e-tdt

But [de-t]~ = [0 - 0] = 0 and the above becomes

r (~) = ~100

t(-~)e-tdt

But Jooo t(-~)e-tdt = r (~), hence the above becomes

Ir G) = ~r G) I
1
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Now do the same for n = 5

r (~) = 1= t(~-l)e-tdt

U dv

r=~~
= io t(~)e-tdt

= - [de-t]~ -100

~t(~) (_e-t) dt

31== - t(~)e-tdt
2 0

But Jo=tO)e-tdt we found from above to be r (~), hence

r (~) = ~r (~)
But r (~) = ~r (~) from above, hence

r (~) = ~~r (~)
31

= --.,In
22

Continuing this way, we find that r (~) = ~ ~ ~r (~), and hence in general

Ir(~) = ¥¥¥"'~~~vnl
Now,

(n - 1)! = (n - 1) (n - 2)(n - 3)(n - 4)(n - 5)(n - 6)· ··5 x 4 x 3 x 2 x 1

Hence from above we see that

(n - 1)!
(n - 2)(n - 4)(n - 6) .. ·5 x 3 x 1 = (n _ 1) (n _ 3) (n _ 5) ... 4 x 2 x 1

Therefore (1) can be written as

There are n 21 such tenus
--"

But
~(n-1) I_~ 1\ f_ n-l\ 2n

-
1

(1)

---./

-/
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',--,

Hence (2) becomes

r (~) - ( (n - 1)! ) _1vn
2 - 2~ (n - 1)(n - 3)(n - 5)···4 x 2 2n - 1

But there are n~1 terms in the expression (n - 1) (n - 3) (n - 5) ···4 x 2 in the denominator
above and we have n~1 number of ~ sitting there, which we can distribute now below each terms
to obtain

But

(
n) ( (n - 1)! ) 1

r "2 = ~~~ ... 1 x £ 2n - Ivn
2 2 2 2 2

(
n - 1) (n - 1) (n - 1 ) (n - 1 )-2- ! = -2- --2- - 1 -2- - 2 ... x 4 x 3 x 2 x 1

(
n - 1) (n - 3) (n - 5)= -2- --2- --2-·'· x 4 x 2

(3)

--./

Compare the above to the denominator term in (3) we see it is the same. Hence (3) can be
written as

r (!!) - (n-I)! I r:;;
2 -~~y1f

Which is what we are asked to show.

.r­
o

'-{::

~ <J -j' 'Y "
'<. ~ u ~ .

-"r- jb ';f Jr, ;;
<{ j J j

3
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2. If I' -. ('Ilif('flll[-I.I], hurl till' ("'Il~il\' of Z = l·~.

frill ;

1/2

-1

pdf of U

Since U is continuous LV., we start with the CDF of Z

Fz (z) = P (Z :::; z)

= P (U2
:::; z)

= P (-Vi :::; U:::; Vi) (1)

-'

But since F& (u) = 1u (u), then we know that P (a:::; U:::; b) = J: 1u (x) dx --t Fu (b) - Fu (a)
Hence RES of (1) becomes

Fz (z) = Fu (Vi) - Fu (-Vi)

FrJ.-J=;

-J=

CDF ofU

u

FuJ=;

J=

Therefore, taking derivatives with respect to z we obtain

d d
1z (z) = 1u (Vi) dz Vi - 1u (-Vi) dz (-Vi)

= ~z 2
1

1u (Vi) + 1u (-Vi) ~z2
1

2 2

= ~z 2
1

(Ju (Vi) + 1u (-Vi))

Since U is uniform, hence 1u (a) = 1u (-a), hence the above becomes

1 -1 (1z (z) = 2Z2 21u (Vi))
1

= .fi 1u (Vi)

Now I need to determine the limits of 1z (z) and the shape. 1u is defined for real arguments
from -1 to +1. i.e. 1u is real valued function of real arguments. Hence if z was negative then

4

---'
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z>O

ft will be complex, and so this will not be allowed. Hence we have to restrict z 2 o. But now
we observe that z = 0 is not possible, since we will have ~ term, so this means z is strictly larger
than zero. So

1
fz (z) = ft fu (v'Z)

But we know that fu (x) = ~ for up to x = 1, hence this means when ft > 1 then fu (ft) = 0,
when means when z > 1 then fu (ft) = 0

Hence we now write

fz (z) ~ {

Here is a plot

i( ) =:. _1_ I. > c, ,;,; ~ 1
~r

1 1
y'z2
o

undefined

O<z::S;l
z>l
z::S;O

/

'- ......

---

f ( ) = (, I· > 1

£'l ·tlf( ). { """"'.'1.1 S}. f·L·tR.?II·.·~~" (,ColI, {('. if,)}, FrJll~L!.J:·~I.. (' , ,

Frail" .. Tn,,,)

10 ,'i pdfofZI. i' ii, i

8
uti' ~

'-----
o I, 'i I

00 02 0.4 06 0.8 1D 12 1.4

5

'} ,
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3. 1'h(' fnllml'ing Ih'(' nlllllh('r~ \\'N(' randoml~1 g<'!1('r<il('c! from thl' uniform random \'ariabl('
,," ; II, I ,:

lI,ill '.:\ II, ';' Hi:, ii, 11'" n, IJ:~ I"

ll"in,!l; tht':'(' l111mlwr" ,2;('11(>1':11(' f]\,(> r:lndom JlI1mh(,I~ from rh(' g('nmNrif" random \'ariahlf·
\'.illl 1';";1111<'11'1' I' == I,:~, \"'1'\' \'ridh' l'xl'l:lilJ I,,,\\, \""lol'l"ill \'01ll' ""hlli"IJ. --./

I explain the idea behind obtaining a discrete random number from a continues random number
by the following diagram below. We assume that the discrete random number belongs to some
distribution. In this example, we are told what the distribution is. We know that the CDF for
geometric random variable is given by

FK (k) = 1 - (1 _ p)k /
--------------------------------

pdf(u)

/.­,
I 1------

I
I
I

; OL--k<=)0--k(=)-1--kC=~2--<J--<)---------

We pick a random number from U, which is "
uniform random number between 0,1, Then \,
we lookup, on the CDF of the distribution of "
interest. between which k's this value is "
located, and we take the upper k as the ........ ,
new random variable ' ...

We see that u is located between k=O and k=1 in
this example, hence we pick k=1 is the random
variable associated with this specific u

To be able to find k in this method, we will have to
know the inverse function of F(k)

We see from the above diagram, that once we are given u we need to find k which satisfy the
following identity

FK (k - 1) < u ~ FK (k)

Or in other words

1 - (1 - p)k-l < U ~ 1 - (1 _ p) k

The specific discrete value k which will satisfy the above, is the random variable we want,
which belong to the geometeric distribution.
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F(k)

pdf(u)I
1 f-i-------,

o u--_~ --

kI-d-p;

------
--------...~,------

1 - ,1- P :k-l
o k=O k=1 k=2

\..rhiS k is the discrete
random variable
derived from u. but
this k can be found

from F-l (11 k )-, -1':

Now when u = 0.0153, and since p = ~) we have

( l)k-l ( l)k
1 - 1 - '3 < 0.0153 ::; 1 - 1 - '3

for k = 1, we have

o< 0.0153 ::; 0.33333 YES

IHence k = 1 is the random variable associated with u = 0.01531
Now let us do u = 0.7468
for k = 1, we have

0< 0.7468::; 0.33333 NO

try k = 2

1 _ (1 _ ~) 1 < 0.7468 ::; 1 _ (1 _ ~) 2

0.33333 < 0.7468::; 0.55556 NO

try k = 3

1 - (1 - D2 < 0.7468 <; 1 - (1 - D3

0.55556 < 0.7468 ::; 0.7037 NO

try k = 4

1- (1- D3 < 0.7468 <; 1- (1- D4

0.7037 < 0.7468 ::; 0.802 47 YES

7
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IHence k = 4 is the random variable associated with u = 0.74681
Now let us do u = 0.4451
We see from the above, that this will have k = 2 since for k = 2 the intervals is 0.33333 <

u < 0.55556
IHence k = 2 is the random variable associated with u = 0.4451 ,
Now let us do u = 0.9318
From above, we see that this will have a k larger than 4, so we do not need to try from the

start, we can start trying from k = 5
try k = 5

1 _ (1 _ ~) 4 < 0.9318 ~ 1 _ (1 _ ~) 5

0.80247 < 0.9318 :s 0.86831 NO

try k = 6

1 _ (1 _ ~) 5 < 0.9318 ~ 1 _ (1 _ ~) 6

0.86831 < 0.9318 ~ 0.91221 NO

try k = 7

1 _ (1 _ ~) 6 < 0.9318 ~ 1 _ (1 _ ~) 7

0.91221 < 0.9318 ~ 0.94147 YES

'Hence k = 7 is the random variable associated with u = 0.93181
Hence result is

u k
0.0153 1
0.4451 2
0.7468 4
0.9318 7

of course one would write a program to do this.

8

----'
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-

~. fhl''''' j)h,y(']'~ plaY 10 inr!"j)rnr!C'nt rounds of f1 J!:fllllr. ;~nd ,,;~('h pl:,Yrl' hn.~ pmh;1hilitY
I,:{ Ill' Il'illlllll'~: ";HII 1'11111111. (a) ",illllllw joiul di~lriIJlllil'lI "I' ,Ill' 1J1I11I11l'1'~ or .\!.;IIIII'~ 11,'<>11

by ('M·1l of lllP I'hl'(,(' pb~·(']'~. (b) rd('ntif~' the diHrihulion of tl1l' nlllllhrr of ~nn1l'~ \I'on 1)1'
1'1",'( 1'11111'.

(a)
Let P (Xi = ni) means probability of player i wiruring ni rounds.
We have 3 players, and a total of 10 rounds. Let the players be called Xl, X2, X3. Let the

number of games WON by Xl be nl, and number of games won by X2 be n2, and number of games
won by X3 be n3.

Since we have 10 rounds, then we must have 10 wins as well. (some one must win). Hence we
have 10 wins and 3 ways to split it, where each 'bucket' is of different size. So this is a multi set
selection. called multinomial in the book using proposition B in chapter 1, we see that the total

number of ways the games can be won is ( 10 )
nln2n3

But we need to find the probability of each one such combination. So we need to multiply the
above by the probability each player wins the number of the games they happened to win, which
is P (Xi = ni) = pn" but p = ~ for each player to win a round. Hence we write

___ I
P(XI = nl,X2 = n2,x3 = n3) = ( 10 ) (~)nl (~)n2 (~)n3

nJn2n3 3 3 3

= ~ (~)nl+n2+n3
nIl n21 n31 3 / I

1O! 1 10 . +n -;2- .

= nl!n2! n3! ('3) ('I\..\..~V\."V :) '"

So the above is the joint probability that PI wins nl rounds and P2 wins n2 rounds and P3 wins
n3 rounds.

(b)We need to find P (Xl = nd, i.e. the probability of first player winning nl rounds.

P(XI = nl) = L P(XI = nl,X2 = n2,x3 = n3)
n2=O,I, ..·10
n3=0,1,.·,10

To simplify, let me write P (nl, n2, n3) instead, where the position of the n implies the player.
So P (0,1,9) means player one wins zero rounds and player 2 wins 1 round and player 3 wins 9
rounds.

So the above becomes

P (Xl = nl) = L P (nl' n2, n3)
n2=O,I,. .. IO
n3=O,I,. ..1O

But since nl = 10 - (n2 + n3) we see that we only need to count those terms in the above
sum when this is true. i.e. we do not need to count a term such as P (1,0,0) since this is zero
probability of happening. Now we write

P (Xl = nl) = P (nl' 10 - nl, 0) + P (nl' 9 - nl, 1) + P (nl' 8 - nl, 2) + ... P (nl, 0,10 - nl)

9
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For example,
P (Xl = 0) = P (0,10,0) + P (0, 9,1) + P (0, 8, 2) + P (0, 7, 3) + P (0, 6, 4) + P (0, 5,5) +
P (0, 4, 6) + P (0, 3, 7) + P (0, 2, 8) + P (0, 1,9) + P (0, 0,10)
But P (0,10,0) = P (0, 0,10) and P (0, 9,1) = P (0, 1,9), etc.. so the above can be written as

./

P (Xl = 0) = 2P (0,10,0) + 2P (0, 9,1) + 2P (0, 8, 2) + 2P (0, 7, 3) + 2P (0, 6, 4) + P (0, 5, 5)

_ 1O! (!) 10 2 1O! (!) 10 1O! (!) 10
- 2O! 1O! O! 3 + O! 9! I! 3 + 2O! 8' 2! 3 +

10! (1) 10 1O! (1) 10 1o! (1) 10
20!7! 3!"3 + 2O! 6! 4!"3 + O! 5! 5! "3

= 11. 7342 x 10-2 1

and

P (Xl = 1) = P (1, 9, 0) + P (1, 8,1) + P (1, 7, 2) + P (1, 6, 3) + P (1, 5,4) + P (1, 4, 5)

+ P (1, 3, 6) + P (1, 2, 7) + P (1, 1,8) + P (1, 0, 9)

= 2P (1, 9, 0) + 2P (1, 8, 1) + 2P (1, 7, 2) + 2P (1, 6, 3) + 2P (1, 5, 4)

1O! (1)10 1O! (1)10 10! (1)10 10! (1)10 1O! (l)V
= 21! 9! 0!"3 +2 1! 8! I! "3 +2 1! 7! 2!"3 +2 1!6! 3!"3 +2 1! 5! 4! "3 -

= 18.6708 x 10-2
1

and

P (Xl = 2) = P (2, 8, 0) + P (2, 7,1) + P (2, 6, 2) + P (2, 5,3) + P (2, 4, 4) + P (2, 3, 5) +
P (2, 2, 6) + P (2, 1,7) + P (2, 0,8)

= 2P (2, 8, 0) + 2P (2, 7,1) + 2P (2, 6, 2) + 2P (2, 5, 3) + P (2, 4, 4)

1O! (1)10 1O! (1)10 1O! (1)10 10! (1)10 1O! (1)10
= 22! 8! O!"3 + 22! 7! I! "3 + 22! 6! 2!"3 + 22!5! 3!"3 + 2! 4! 4! "3

=10.195091

and



chapter 4. quizes 264

P (Xl = 3) = P (3, 7, 0) + P (3, 6,1) + P (3, 5, 2) + P (3, 4, 3) + P (3, 3, 4) +
P (3, 2, 5) + P (3,1,6) + P (3, 0, 7)

= 2P (3, 7, 0) + 2P (3, 6,1) + 2P (3, 5,2) + 2P (3, 4, 3)

_ 2 1O! (~) 10 2 1O! (~) 10 10! (~) 10 10! (~) 10
- 3! 7! O! 3 + 3! 6! I! 3 + 23! 5' 2! 3 + 23!4! 3! 3

= I0.260 121

and

P (Xl = 4) = P (4, 6, 0) + P (4, 5,1) + P (4, 4, 2) + P (4, 3, 3) + P (4, 2, 4) + P (4,1,5) + P (4, 0, 6)

= 2P (4, 6, 0) + 2P (4, 5,1) + 2P (4, 4, 2) + P (4, 3, 3)

_ 1O! (~) 10 1O! (~) 10 2 1O! (~) 10 1O! (~) 10

- 24! 6! O! 3 + 24! 5! I! 3 + 4! 4! 2! 3 + 4!3! 3! 3

= 10.227611

and

P (Xl = 5) = P (5,5,0) + P (5, 4,1) + P (5, 3, 2) + P (5, 2, 3) + P (5,1,4) + P (5, 0, 5)

= 2P (5, 5, 0) + 2P (5, 4,1) + 2P (5, 3, 2)

10! (1) 10 1O! (1) 10 1O! (1) 10
= 25, 5! O! 3 + 25!4! I! 3 + 25! 3! 2! 3
= 10.136561

and

P (Xl = 6) = P (6, 4, 0) + P (6, 3,1) + P (6, 2, 2) + P (6,1,3) + P (6, 0, 4)

= 2P (6, 4, 0) + 2P (6,3,1) + P (6, 2, 2)

10! (1) 10 10! (1) 10 1O! (1) 10

= 26! 4! O! 3 + 26!3! I! 3 + 6! 2! 2! 3
= 15. 6902 x 10-2

1

and

11
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P (Xl = 7) = P (7, 3, 0) + P (7, 2,1) + P (7,1,2) + P (7, 0, 3)

= 2P (7, 3, 0) + 2P (7, 2,1)

1O! ( 1) 10 1O! ( 1) 10
= 27! 3! O! 3 +2 7!2! I! 3
= 11. 625 8 x 10-2 1

and

P (Xl = 8) = P (8, 2, 0) + P (8,1,1) + P (8, 0, 2)

= 2P (8, 2, 0) + P (8,1,1)

1O! (1)10 10! (1)10
= 28! 2! O! 3 + 8!l! I! "3

= 13. 0483 x 10-3
1

and

P (Xl = 9) = P (9,1,0) + P (9, 0,1)

= 2P (9,1,0)

1O! (1) 10
- 29! I! O! "3

= 13. 387 x 10-4
1

and

P(XI = 10) = P(lO,O,O)

1O! (1) 10
= 1O! O! O! "3

= 11. 6935 x 10-5 1

Here is a plot of the marginal probability for player 1 winning n rounds

12

./

---./
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'0[11'1 data = {1. 1342 ... 10-2 , 8.6108 ... 10-2 , 0.19509, 0.260112, 0.22161, 0.13656, 5.6902 ... 10-2 ,

1. 62.58 ... 10-2 , 3.0483 ... 10-3 • 3.3818 ... 10-'. 1.6935 ... 10·5};

Tabl.eForJll[Tah1e [{: - 1, data [ [i II}. {i. 1, Length [ datal} I, Tah1eHeadings -+ {Kone. ('" " • "Il' , )} J

Tota1[data)

Ustp10t [data, Fil1ing'" Axis. P1otSty1e .... {R.ed, ThJ.ck},

P1otLabe1 .... '

AxesLabe1-+{"numb"r of wins'. "P(n)"})

n p (n)
o 0.017342
1 0.086708
2 0.19509
3 0.260112
4 0.22761
5 0.13656
6 0.056902
7 0.016258
8 0.0030483
9 0.00033878
10 0.000016935

0u1(117]= 0.999986

Probability of nwnber of rounds wins by firstplayer
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I

ro. 1.<'1 IS.)·I II(' joilil k di"ll'ihnH'd HIIJdo!JI I":1ri:lI)j"" willi I'df

. 1 ~ 'J _

! \ 1', 'I! = -:-\ 1" - ,r!f ' ():-":::. x -,' _ ,'I :- 1',
i"

(n) Find til!' lll;1rginal dPIJ"irY of )', (b) Find PLY +}' ::; I), For j);)rr (h) Ie';)\,(, \'om
""Ililioll "" ilil"'..:.r:ll", :i1ld dll 11,,1 "d. n!,i1,·l\w i1Pl''..:.1''IJ,..,

(a)

fy (y) = 100

f (x, y) dx

1001

= _ (x2 _ y2) e-Xax
o 8

Integrate by parts, dv = e-Xdx, U = (x2 - y2), hence duJ= 2x and v = _e-x , so we obtain

fy (y) = ~ {[(x2- y2) (_e-X)]: 100

(2x) (_e-X) dX}

=H-4\\ -y')(e-X)] +2f xe-Xdx}

= ~ {- [O+~] +2h xe-Xdx}

./

Do integration by parts again, dv = e- = x, hence

/~

Hence

fy (y) = ~ {_y2 + 2 (x e-X)): -100

-e-Xdx]}

= ~ {_y2 + [_ (xe-X
00 +100

e-Xdx]}

= ~ {_y2
8

= ~ {_y2 4- 2 [- [0 - 1]]}
8

= ~ {_y2 + 2}
8

Ify (y) = ~ (2 - y2) I
(b)The hard part is to determine the region to integrate. The following is the needed region

which satisfy P (X + Y ~ 1) and 0 ~ x ~ 00 and - x ~ y ~ x



chapter 4. quizes 268

y

2
x

-1 I- - - - - - - - - - - - I • .....

For the top region,

l
X=11Y=1 1II = - (x2 - y2) e-!{dydx

x=o y=l-x 8

and for the bottom region

l
X=21Y

=-X 1h = -8 (x2 - y2) e-xd''tJ(Jx
x=l y=o

Hence

p (X + Y ::; 1) = Jx::01J:::Lx g(x2 - y2) e-Xdydx + J1::12
J:::o-'X g(x2 - y2) e-Xdydx

15
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4.3 Quiz 3

Local contents
4.3.1 short version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
4.3.2 Graded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
4.3.3 long version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

4.3.1 short version

Figure 4.22: Problem 1

(a)Problem review:

T1 is a random variable and T2 is a random variable, where T1 = αe−αt1 and T2 = βe−βt2

α and β can be thought of as the failure rate for each respective component. Ti is the lifetime
of component i. Hence P (T1 = t1) means to ask for the probability of the first component to
have a lifetime of t1 given that the failure rate of this kind of components is α.

solution:

Now we know that
P (T1 > T2) =

∫ ∫
fT1,T2(t1, t2) dt2dt1

Looking at the following diagram to help determine the region to integrate:
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Figure 4.23: region to integrate

Hence

P (T1 > T2) =
∫ t1=∞

t1=0

∫ t2=t1

t2=0
fT1,T2(t1, t2) dt2 dt1

But since T1 ⊥ T2, then the joint density is the product of the marginal densities.

Hence

fT1,T2(t1, t2) = fT1(t1) fT2(t2)
= αe−αt1βe−βt2

Therefore
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P (T1 > T2) =
∫ ∞

0

∫ t1

0
αe−αt1βe−βt2 dt2 dt1

= βα

∫ ∞

0
e−αt1

(∫ t1

0
e−βt2 dt2

)
dt1

= βα

∫ ∞

0
e−αt1

(
− 1
β

[
e−βt2

]t2=t1

t2=0

)
dt1

= −α

∫ ∞

0
e−αt1

[
e−βt1 − 1

]
dt1

= −α

∫ ∞

0
et1(−α−β) − e−αt1 dt1

= −α

([
1

(−α− β)e
t1(−α−β)

]∞
0
− 1

−α

[
e−αt1

]∞
0

)

We take α, β ≥ 0 since we expect the lifetime to go to zero eventually. Also this is a
requirement for the integrals to not diverge.

Hence the above becomes

P (T1 > T2) = −α

(
1

(−α− β)
[
et1(−α−β)]∞

0 + 1
α

[
e−αt1

]∞
0

)
= −α

(
1

(−α− β)
[
e−∞ − 1

]
+ 1

α

[
e−∞ − 1

])
= −α

(
1

(−α− β) [0− 1] + 1
α
[0− 1]

)
= −α

(
1

(α + β) −
1
α

)
= −α

(
α− (α + β)
α (α + β)

)
= −

(
α− α− β

(α + β)

)

Hence

P (T1 > T2) = β
(α+β)

(b)
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FW (w) = P (W ≤ w)
= P (2T2 ≤ w)

= P
(
T2 ≤

w

2

)
= FT2

(w
2

)
Hence

fW (w) = fT2

(w
2

)
× d

dw

(w
2

)
Hence

fW (w) = 1
2fT2

(
w
2

)
(c)Need to find P (T1 > 2T2) which is the same as P (T1 > W ), hence this is the same as
part(a) but replace T2 by W as show in the following diagram

Figure 4.24: diagram

Hence
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P (T1 > W ) =
∫ ∞

0

∫ t1

0
fT1(t1) fW (w) dw dt1

=
∫ ∞

0

∫ t1

0
fT1(t1)

[
1
2fT2

(w
2

)]
dw dt1

=
∫ ∞

0

∫ t1

0
αe−αt1

[
1
2βe

−β
(
w
2
)]

dw dt1

= 1
2βα

∫ ∞

0
e−αt1

(∫ t1

0
e−β

(
w
2
)
dw

)
dt1

= 1
2βα

∫ ∞

0
e−αt1

(
− 2
β

[
e−β

(
w
2
)]w=t1

w=0

)
dt1

= −α

∫ ∞

0
e−αt1

[
e
−β

(
t1
2

)
− 1
]

dt1

= −α

∫ ∞

0
e
t1
(
−α−β

2

)
− e−αt1 dt1

= −α

∫ ∞

0
e
t1
(

−2α−β
2

)
− e−αt1 dt1

= −α

([
2

(−2α− β)e
t1
(

−2α−β
2

)]∞
0
− 1

−α

[
e−αt1

]∞
0

)
= −α

(
2

(−2α− β) [0− 1] + 1
α
[0− 1]

)
= −α

(
2

(2α + β) −
1
α

)

Hence

P (T1 > W ) = −
(
2α− (2α + β)

(2α + β)

)
= −

(
2α− 2α− β

(2α + β)

)

Then

P (T1 > W ) = β
(2α+β)
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Figure 4.25: Problem 2

Problem review: Poisson probability density is a discrete probability function (We normally
call it the probability mass function pmf). This means the random variable is a discrete
random variable.

The random variable X in this case is the number of success in n trials where the probability
of success in each one trial is p and the trials are independent from each others. The difference
between Poisson and Binomial is that in Poisson we are looking at the problem as n becomes
very large and p becomes very small in such a way that the product np goes to a fixed
value which is called λ, the Poisson parameter. And then we write P (X = k) = λk

k! e
−λ where

k = 0, 1, 2, · · · The following diagram illustrates this problem, showing the three r.v. we need
to analyze and the time line.

Figure 4.26: diagram illustrates this problem

But what is "trials" in this problem? If we divide the time line itself into very small time
intervals δt then the number of time intervals is the number of trials, and we assume that at
most one event will occur in this time interval (since it is too small). The probability p of
event occurring in this δt is the same in the interval [t0, t1] and in the interval [t1, t2]. Now
let us find λ for X and Y and Z based on this. Since λ = np where n is the number of trials,
then for X we have λx = nxp = (t1−t0)

δt
p where we divided the time interval by the time

width δt to obtain the number of time slots for X. We do the same for Y and obtain that
λy = (t2−t1)

δt
p
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Similarly, λZ = (t2−t0)
δt

p = (t2−t1)+(t1−t0)
δt

p = (t2−t1)
δt

p+ (t1−t0)
δt

P , hence λz = λx + λy

Figure 4.27: delta

Let us refer to the random variable N(t1, t2) as Y and the r.v. N(t0, t1) as X and the r.v.
N(t0, t2) as Z

The problem is then asking to find P (X = x|Z = n) and to identify pmf(X|Z)

To help in the solution, we first draw a diagram to make it more clear.

We take λ to the same for the 3 random variables X,Y, Z.

P (X = x|Z = n) = P (X = x, Z = n)
P (Z = n)

But Z = n is the same as X + Y = n hence
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P (X = x|Z = n) = P (X = x, (X + Y ) = n)
P (Z = n)

= P (X = x, Y = n− x)
P (Z = n)

Now r.v. X ⊥ Y , since the number of events in [t0, t1] is independent from the number of
events that could occur in [t1, t2].

Given this, we can now write the joint probability of X,Y as the product of the marginal
probabilities. Hence the numerator in the above can be rewritten and we obtain

P (X = x|Z = n) = P (X = x)P (Y = n− x)
P (Z = n) (1)

Now since each of the above is a Poisson process, then

P (X = x) = (λx)x

x! e−λx

P (Y = n− x) = (λy)n−x

(n− x)!e
−λy

P (Z = n) = (λz)n

n! e−λz

Hence (1) becomes

P (X = x|Z = n) =
(
(λx)x

x! e−λx

)(
(λy)n−x

(n− x)!e
−λy

)
1

(λz)n
n! e−λz

(2)

Hence

P (X = x|Z = n) = n!
x! (n− x)!

(
(λx)x e−λx

) (
(λy)n−x e−λy

) eλz

(λz)n

But we found that λz = λx + λy, hence the exponential term above vanish and we get
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P (X = x|Z = n) = n!
x! (n− x)!

(λx)x (λy)n−x

(λz)n

=
(
n

x

)
(λx)x (λy)n−x

(λz)n

=
(
n

x

)
(λx)x (λy)n−x

(λx + λy)n

=
(
n

x

)
(λx)x (λy)n−x

(λx + λy)x (λx + λy)n−x

=
(
n

x

)
(λx)x

(λx + λy)x
(λy)n−x

(λx + λy)n−x

=
(
n

x

)(
λx

λx + λy

)x(
λy

λx + λy

)n−x

Let k = λx

λx+λy
, then 1− k = 1− λx

λx+λy
= λx+λy−λx

λx+λy
= λy

λx+λy
hence the last line above can be

written as

P (X = x|Z = n) =
(
n

x

)(
λx

λx + λy

)x(
1− λx

λx + λy

)n−x

=
(
n

x

)
(k)x (1− k)n−x

But this is a Binomial with parameters n, k, hence

P (X = x|Z = n) = Binomial
(
n, λx

λx+λy

)

Figure 4.28: Problem 3

part (a)
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Let θ, the probability of getting heads, be the specific value that the random number Θ can
take.

Let g(θ) be the probability density of Θ, which we are told to be U [0, 1], and let pmfX(x) be
the probability mass function of the random variable X where X is the number of times until
a head first comes up. X is then a geometric random variable with parameter θ , hence

pmfX(N) = P (X = N) = (1− θ)N−1 θ N = 1, 2, 3, · · ·

The posterior density of Θ given N is then

h(Θ = θ|X = N) = pmfX(N |Θ=θ)g(θ)∫ 1
0 pmfX(N |Θ=θ)g(θ)dθ

But
pmfX(N |Θ = θ) = (1− θ)N−1 θ

and g(θ) = 1 since Θ = U [0, 1]

Hence

h(Θ = θ|X = N) = (1− θ)N−1 θ∫ 1
0 (1− θ)N−1 θ dθ

(1)

But Θ is a random continuous variable from [0, 1], so how to evaluate the above? I can
evaluate the above for different values of Θ on the real line from [0, 1], and the more values I
take between 0, 1 the more accurate h(Θ = θ|X = N) will become.

Part(b)

First let me evaluate eq (1) for N = 1, N = 2, N = 6

For N = 1

h(Θ = θ|X = 1) = θ∫ 1
0 θ dθ

= θ[
θ2

2

]1
0

= 2θ

For N = 2
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h(Θ = θ|X = 2) = (1− θ) θ∫ 1
0 (1− θ) θ dθ

= (1− θ) θ∫ 1
0 (θ − θ2) dθ

= (1− θ) θ[
θ2

2

]1
0 −

[
θ3

3

]1
0

= (1− θ) θ
1
2 −

1
3

= 6(1− θ) θ

For N = 6

h(Θ = θ|X = 6) = (1− θ)6−1 θ∫ 1
0 (1− θ)6−1 θ dθ

= (1− θ)5 θ∫ 1
0 (1− θ)5 θ dθ

We can use integration by parts for the denominator, where u = θ, dv = (1− θ)5, when we
do this we obtain

h(Θ = θ|X = 6) = 42(1− θ)5 θ

Now we plot the above 3 cases on the same plot:
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Figure 4.29: posterior

What the above plot is saying is the following:

If it takes ’longer’ to see a head comes up (N = 6), then the coin is taken as biased towards
a tail, and the probability of getting a head becomes smaller, this is why we see that the
most likely probability in this case to be around 0.15 (looking at the N=6 curve). We say
that based on the observation of N = 6, then the coin has a higher probability of having
its probability of getting a head to be about 0.15 than any other value. (The area around
θ = 1.5 is larger than any other area for the same δθ)

Now, when N = 2, i.e. we flipped the coin 2 times, and got a head on the second time, then
we see from the N = 2 curve that the coin has a most likelihood of having a probability of
getting a head to be 0.5.

This is what we would expect, since in an unbiased coin, the probability of getting a head
is 1

2 , and hence with a fair coin, we expect to see a head half of the times it is flipped, and
since we flipped 2 times, and saw a head the second time, this posterior probability has its
most likely value to be around .5 as well.
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When N = 1, this says that we got a head in the first time we flipped the coin. We see that
the posterior probability of getting a head now has it maximum around 1. This means the
posterior probability is saying this coin is biased towards a head.

The above is a method to estimate the probability distribution of the probability itself of
getting a head based on the observed events and based on the prior known probability of
getting a head. Hence the events observed allow us to estimate the probability of getting a
head. Hence the posterior probability is conditioned on each event as in this problem.

4.3.2 Graded
18/20
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(a)Problem review:

T1 is a random variable and T2 is a random variable, where T1˜αe−αt1 and T2˜βe−βt2 .

α and β can be thought of as the failure rate for each respective component. Ti is the lifetime
of component i. Hence P (T1 = t1) means to ask for the probability of the first component to
have a lifetime of t1 given that the failure rate of this kind of components is α.

solution:

Now we know that
P (T1 > T2) =

∫ ∫
fT1,T2(t1, t2) dt2dt1

Looking at the following diagram to help determine the region to integrate:

Hence

P (T1 > T2) =
∫ t1=∞

t1=0

∫ t2=t1

t2=0
fT1,T2(t1, t2) dt2 dt1

But since T1 ⊥ T2, then the joint density is the product of the marginal densities.

1
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Hence

fT1,T2(t1, t2) = fT1(t1) fT2(t2)
= αe−αt1βe−βt2

Therefore

P (T1 > T2) =
∫ ∞

0

∫ t1

0
αe−αt1βe−βt2 dt2 dt1

= βα

∫ ∞

0
e−αt1

(∫ t1

0
e−βt2 dt2

)
dt1

= βα

∫ ∞

0
e−αt1

(
− 1
β

[
e−βt2

]t2=t1

t2=0

)
dt1

= −α

∫ ∞

0
e−αt1

[
e−βt1 − 1

]
dt1

= −α

∫ ∞

0
et1(−α−β) − e−αt1 dt1

= −α

([
1

(−α− β)e
t1(−α−β)

]∞
0
− 1

−α

[
e−αt1

]∞
0

)

We take α, β ≥ 0 since we expect the lifetime to go to zero eventually. Also this is a
requirement for the integrals to not diverge.

Hence the above becomes

P (T1 > T2) = −α

(
1

(−α− β)
[
et1(−α−β)]∞

0 + 1
α

[
e−αt1

]∞
0

)
= −α

(
1

(−α− β)
[
e−∞ − 1

]
+ 1

α

[
e−∞ − 1

])
= −α

(
1

(−α− β) [0− 1] + 1
α
[0− 1]

)
= −α

(
1

(α + β) −
1
α

)
= −α

(
α− (α + β)
α (α + β)

)
= −

(
α− α− β

(α + β)

)

Hence

2
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P (T1 > T2) = β
(α+β)

(b)

FW (w) = P (W ≤ w)
= P (2T2 ≤ w)

= P
(
T2 ≤

w

2

)
= FT2

(w
2

)
Hence

fW (w) = fT2

(w
2

)
× d

dw

(w
2

)
Hence

fW (w) = 1
2fT2

(
w
2

)
(c)Need to find P (T1 > 2T2) which is the same as P (T1 > W ), hence this is the same as
part(a) but replace T2 by W as show in the following diagram

Hence

3
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P (T1 > W ) =
∫ ∞

0

∫ t1

0
fT1(t1) fW (w) dw dt1

=
∫ ∞

0

∫ t1

0
fT1(t1)

[
1
2fT2

(w
2

)]
dw dt1

=
∫ ∞

0

∫ t1

0
αe−αt1

[
1
2βe

−β
(
w
2
)]

dw dt1

= 1
2βα

∫ ∞

0
e−αt1

(∫ t1

0
e−β

(
w
2
)
dw

)
dt1

= 1
2βα

∫ ∞

0
e−αt1

(
− 2
β

[
e−β

(
w
2
)]w=t1

w=0

)
dt1

= −α

∫ ∞

0
e−αt1

[
e
−β

(
t1
2

)
− 1

]
dt1

= −α

∫ ∞

0
e
t1
(
−α−β

2

)
− e−αt1 dt1

= −α

∫ ∞

0
e
t1
(

−2α−β
2

)
− e−αt1 dt1

= −α

([
2

(−2α− β)e
t1
(

−2α−β
2

)]∞
0
− 1

−α

[
e−αt1

]∞
0

)
= −α

(
2

(−2α− β) [0− 1] + 1
α
[0− 1]

)
= −α

(
2

(2α + β) −
1
α

)
Hence

P (T1 > W ) = −
(
2α− (2α + β)

(2α + β)

)
= −

(
2α− 2α− β

(2α + β)

)
Then

P (T1 > W ) = β
(2α+β)

4
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Problem review: Poisson probability density is a discrete probability function (We normally
call it the probability mass function pmf). This means the random variable is a discrete
random variable.

The random variable X in this case is the number of success in n trials where the probability
of success in each one trial is p and the trials are independent from each others. The difference
between Poisson and Binomial is that in Poisson we are looking at the problem as n becomes
very large and p becomes very small in such a way that the product np goes to a fixed
value which is called λ, the Poisson parameter. And then we write P (X = k) = λk

k! e
−λ where

k = 0, 1, 2, · · · The following diagram illustrates this problem, showing the three r.v. we need
to analyze and the time line.

But what is "trials" in this problem? If we divide the time line itself into very small time
intervals δt then the number of time intervals is the number of trials, and we assume that at
most one event will occur in this time interval (since it is too small). The probability p of
event occurring in this δt is the same in the interval [t0, t1] and in the interval [t1, t2]. Now
let us find λ for X and Y and Z based on this. Since λ = np where n is the number of trials,
then for X we have λx = nxp = (t1−t0)

δt
p where we divided the time interval by the time

width δt to obtain the number of time slots for X. We do the same for Y and obtain that
λy = (t2−t1)

δt
p

Similarly, λZ = (t2−t0)
δt

p = (t2−t1)+(t1−t0)
δt

p = (t2−t1)
δt

p+ (t1−t0)
δt

P , hence λz = λx + λy

5
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Let us refer to the random variable N(t1, t2) as Y and the r.v. N(t0, t1) as X and the r.v.
N(t0, t2) as Z

The problem is then asking to find P (X = x|Z = n) and to identify pmf(X|Z)

To help in the solution, we first draw a diagram to make it more clear.

We take λ to the same for the 3 random variables X,Y, Z.

P (X = x|Z = n) = P (X = x, Z = n)
P (Z = n)

But Z = n is the same as X + Y = n hence

P (X = x|Z = n) = P (X = x, (X + Y ) = n)
P (Z = n)

= P (X = x, Y = n− x)
P (Z = n)

Now r.v. X ⊥ Y , since the number of events in [t0, t1] is independent from the number of
events that could occur in [t1, t2].

Given this, we can now write the joint probability of X,Y as the product of the marginal
probabilities. Hence the numerator in the above can be rewritten and we obtain

6
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P (X = x|Z = n) = P (X = x)P (Y = n− x)
P (Z = n) (1)

Now since each of the above is a Poisson process, then

P (X = x) = (λx)x

x! e−λx

P (Y = n− x) = (λy)n−x

(n− x)!e
−λy

P (Z = n) = (λz)n

n! e−λz

Hence (1) becomes

P (X = x|Z = n) =
(
(λx)x

x! e−λx

)(
(λy)n−x

(n− x)!e
−λy

)
1

(λz)n
n! e−λz

(2)

Hence

P (X = x|Z = n) = n!
x! (n− x)!

(
(λx)x e−λx

) (
(λy)n−x e−λy

) eλz

(λz)n

But we found that λz = λx + λy, hence the exponential term above vanish and we get

P (X = x|Z = n) = n!
x! (n− x)!

(λx)x (λy)n−x

(λz)n

=
(
n

x

)
(λx)x (λy)n−x

(λz)n

=
(
n

x

)
(λx)x (λy)n−x

(λx + λy)n

=
(
n

x

)
(λx)x (λy)n−x

(λx + λy)x (λx + λy)n−x

=
(
n

x

)
(λx)x

(λx + λy)x
(λy)n−x

(λx + λy)n−x

=
(
n

x

)(
λx

λx + λy

)x(
λy

λx + λy

)n−x

7
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Let k = λx

λx+λy
, then 1− k = 1− λx

λx+λy
= λx+λy−λx

λx+λy
= λy

λx+λy
hence the last line above can be

written as

P (X = x|Z = n) =
(
n

x

)(
λx

λx + λy

)x (
1− λx

λx + λy

)n−x

=
(
n

x

)
(k)x (1− k)n−x

But this is a Binomial with parameters n, k, hence

P (X = x|Z = n) ˜Binomial
(
n, λx

λx+λy

)

part (a)

Let θ, the probability of getting heads, be the specific value that the random number Θ can
take.

Let g(θ) be the probability density of Θ, which we are told to be U [0, 1], and let pmfX(x) be
the probability mass function of the random variable X where X is the number of times until
a head first comes up. X is then a geometric random variable with parameter θ , hence

pmfX(N) = P (X = N) = (1− θ)N−1 θ N = 1, 2, 3, · · ·

The posterior density of Θ given N is then

h(Θ = θ|X = N) = pmfX(N |Θ=θ)g(θ)∫ 1
0 pmfX(N |Θ=θ)g(θ)dθ

But
pmfX(N |Θ = θ) = (1− θ)N−1 θ

and g(θ) = 1 since Θ˜U [0, 1]

8
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Hence

h(Θ = θ|X = N) = (1− θ)N−1 θ∫ 1
0 (1− θ)N−1 θ dθ

(1)

But Θ is a random continuous variable from [0, 1], so how to evaluate the above? I can
evaluate the above for different values of Θ on the real line from [0, 1], and the more values I
take between 0, 1 the more accurate h(Θ = θ|X = N) will become.

Part(b)

First let me evaluate eq (1) for N = 1, N = 2, N = 6

For N = 1

h(Θ = θ|X = 1) = θ∫ 1
0 θ dθ

= θ[
θ2

2

]1
0

= 2θ

For N = 2

h(Θ = θ|X = 2) = (1− θ) θ∫ 1
0 (1− θ) θ dθ

= (1− θ) θ∫ 1
0 (θ − θ2) dθ

= (1− θ) θ[
θ2

2

]1
0 −

[
θ3

3

]1
0

= (1− θ) θ
1
2 −

1
3

= 6(1− θ) θ

For N = 6

h(Θ = θ|X = 6) = (1− θ)6−1 θ∫ 1
0 (1− θ)6−1 θ dθ

= (1− θ)5 θ∫ 1
0 (1− θ)5 θ dθ

We can use integration by parts for the denominator, where u = θ, dv = (1− θ)5, when we
do this we obtain

h(Θ = θ|X = 6) = 42(1− θ)5 θ

Now we plot the above 3 cases on the same plot:

9
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What the above plot is saying is the following:

If it takes ’longer’ to see a head comes up (N = 6), then the coin is taken as biased towards
a tail, and the probability of getting a head becomes smaller, this is why we see that the
most likely probability in this case to be around 0.15 (looking at the N=6 curve). We say
that based on the observation of N = 6, then the coin has a higher probability of having
its probability of getting a head to be about 0.15 than any other value. (The area around
θ = 1.5 is larger than any other area for the same δθ)

Now, when N = 2, i.e. we flipped the coin 2 times, and got a head on the second time, then
we see from the N = 2 curve that the coin has a most likelihood of having a probability of
getting a head to be 0.5.

This is what we would expect, since in an unbiased coin, the probability of getting a head
is 1

2 , and hence with a fair coin, we expect to see a head half of the times it is flipped, and
since we flipped 2 times, and saw a head the second time, this posterior probability has its
most likely value to be around .5 as well.

When N = 1, this says that we got a head in the first time we flipped the coin. We see that
the posterior probability of getting a head now has it maximum around 1. This means the
posterior probability is saying this coin is biased towards a head.

The above is a method to estimate the probability distribution of the probability itself of

10
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getting a head based on the observed events and based on the prior known probability of
getting a head. Hence the events observed allow us to estimate the probability of getting a
head. Hence the posterior probability is conditioned on each event as in this problem.

11
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4.3.3 long version

Figure 4.30: Problem 1

(a)

Problem review:

T1 is a random variable and T2 is a random variable, where T1 = αe−αt1 and T2 = βe−βt2

α and β can be thought of as the failure rate for each respective component. Ti is the lifetime
of component i. Hence P (T1 = t1) means to ask for the probability of the first component to
have a lifetime of t1 given that the failure rate of this kind of components is α.

solution:

Now we know that

P (T1 > T2) =
∫ ∫

fT1,T2(t1, t2) dt2dt1

Looking at the following diagram to help determine the region to integrate:
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Figure 4.31: determine the region to integrate

Hence

P (T1 > T2) =
∫ t1=∞

t1=0

∫ t2=t1

t2=0
fT1,T2(t1, t2) dt2 dt1

But since T1 ⊥ T2, then the joint density is the product of the marginal densites.

Hence

fT1,T2(t1, t2) = fT1(t1) fT2(t2)
= αe−αt1βe−βt2

Therefore
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P (T1 > T2) =
∫ ∞

0

∫ t1

0
αe−αt1βe−βt2 dt2 dt1

= βα

∫ ∞

0
e−αt1

(∫ t1

0
e−βt2 dt2

)
dt1

= βα

∫ ∞

0
e−αt1

(
− 1
β

[
e−βt2

]t2=t1

t2=0

)
dt1

= −α

∫ ∞

0
e−αt1

[
e−βt1 − 1

]
dt1

= −α

∫ ∞

0
et1(−α−β) − e−αt1 dt1

= −α

([
1

(−α− β)e
t1(−α−β)

]∞
0
− 1

−α

[
e−αt1

]∞
0

)

We take α, β ≥ 0 since we expect the lifetime to go to zero eventually. Also this is a requirment
for the integrals to not diverge.

Hence the above becomes

P (T1 > T2) = −α

(
1

(−α− β)
[
et1(−α−β)]∞

0 + 1
α

[
e−αt1

]∞
0

)
= −α

(
1

(−α− β)
[
e−∞ − 1

]
+ 1

α

[
e−∞ − 1

])
= −α

(
1

(−α− β) [0− 1] + 1
α
[0− 1]

)
= −α

(
1

(α + β) −
1
α

)
= −α

(
α− (α + β)
α (α + β)

)
= −

(
α− α− β

(α + β)

)

Hence

P (T1 > T2) = β
(α+β)

(b)
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FW (w) = P (W ≤ w)
= P (2T2 ≤ w)

= P
(
T2 ≤

w

2

)
= FT2

(w
2

)
Hence

fW (w) = fT2

(w
2

)
× d

dw

(w
2

)
Hence

fW (w) = 1
2fT2

(
w
2

)
(c)Need to find P (T1 > 2T2) which is the same as P (T1 > W ), hence this is the same as
part(a) but replace T2 by W as show in the following diagram

Figure 4.32: diagram

Hence
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P (T1 > W ) =
∫ ∞

0

∫ t1

0
fT1(t1) fW (w) dw dt1

=
∫ ∞

0

∫ t1

0
fT1(t1)

[
1
2fT2

(w
2

)]
dw dt1

=
∫ ∞

0

∫ t1

0
αe−αt1

[
1
2βe

−β
(
w
2
)]

dw dt1

= 1
2βα

∫ ∞

0
e−αt1

(∫ t1

0
e−β

(
w
2
)
dw

)
dt1

= 1
2βα

∫ ∞

0
e−αt1

(
− 2
β

[
e−β

(
w
2
)]w=t1

w=0

)
dt1

= −α

∫ ∞

0
e−αt1

[
e
−β

(
t1
2

)
− 1
]

dt1

= −α

∫ ∞

0
e
t1
(
−α−β

2

)
− e−αt1 dt1

= −α

∫ ∞

0
e
t1
(

−2α−β
2

)
− e−αt1 dt1

= −α

([
2

(−2α− β)e
t1
(

−2α−β
2

)]∞
0
− 1

−α

[
e−αt1

]∞
0

)
= −α

(
2

(−2α− β) [0− 1] + 1
α
[0− 1]

)
= −α

(
2

(2α + β) −
1
α

)

Hence

P (T1 > W ) = −
(
2α− (2α + β)

(2α + β)

)
= −

(
2α− 2α− β

(2α + β)

)

Then

P (T1 > W ) = β
(2α+β)
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Figure 4.33: Problem 2

Problem review: Poisson probability density is a discrete probability function (We normally
call it the probability mass function pmf). This means the random variable is a discrete
random variable.

The random varible X in this case is the number of success in n trials where the probability
of success in each one trial is p and the trials are independent from each others. The difference
between Poisson and Binomial is that in Poisson we are looking at the problem as n becomes
very large and p becomes very small in such a way that the product np goes to a fixed value
which is called λ, the Poisson parameter. And then we write P (X = k) = λk

k! e
−λ where

k = 0, 1, 2, · · · The following diagram illustrates this problem, showing the three r.v. we need
to analyze and the time line.

Figure 4.34: illustrates this problem

But what is "trials" in this problem? If we divide the time line itself into very small time
intervals δt then the number of time intervals is the number of trials, and we assume that at
most one event will occure in this time interval (since it is too small). The probability p of
event occuring in this δt is the same in the interval [t0, t1] and in the interval [t1, t2]. Now let
us find λ for X and Y and Z based on this. Since λ = np where n is the number of trials,
then for X we have λx = nxp = (t1−t0)

δt
p where we divided the time interval by the time

width δt to obtain the number of time slots for X. We do the same for Y and obtain that
λy = (t2−t1)

δt
p
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Similary, λZ = (t2−t0)
δt

p = (t2−t1)+(t1−t0)
δt

p = (t2−t1)
δt

p+ (t1−t0)
δt

P , hence λz = λx + λy

Figure 4.35: delta

λx = (t1 − t0)
δt

p

λy =
(t2 − t1)

δt
p

λz =
(t2 − t0)

δt
p

Let us refer to the random variable N(t1, t2) as Y and the r.v. N(t0, t1) as X and the r.v.
N(t0, t2) as Z

The problem is then asking to find P (X = x|Z = n) and to identify pmf(X|Z)

To help in the solution, we first draw a diagram to make it more clear.

We take λ to the same for the 3 random variables X,Y, Z.
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P (X = x|Z = n) = P (X = x, Z = n)
P (Z = n)

But Z = n is the same as X + Y = n hence

P (X = x|Z = n) = P (X = x, (X + Y ) = n)
P (Z = n)

= P (X = x, Y = n− x)
P (Z = n)

Now r.v. X ⊥ Y , since the number of events in [t0, t1] is indepenent from the number of
events that could occur in [t1, t2].

Given this, we can now write the joint probability of X,Y as the product of the marginal
probabilitites. Hence the numerator in the above can be rewritten and we obtain

P (X = x|Z = n) = P (X = x)P (Y = n− x)
P (Z = n) (1)

Now since each of the above is a poisson process, then

P (X = x) = (λx)x

x! e−λx

P (Y = n− x) = (λy)n−x

(n− x)!e
−λy

P (Z = n) = (λz)n

n! e−λz

Hence (1) becomes

P (X = x|Z = n) =
(
(λx)x

x! e−λx

)(
(λy)n−x

(n− x)!e
−λy

)
1

(λz)n
n! e−λz

(2)

Now we simplify this further and try to idensity the resulting distribution. First we note

Hence (2) becomes

P (X = x|Z = n) =


(

(t1−t0)
δt

p
)x

x! e
−
(

(t1−t0)
δt

p
)

(

(t2−t1)
δt

p
)n−x

(n− x)! e
−
(

(t2−t1)
δt

p
) 1(

(t2−t0)
δt

p
)n

n! e
−
(

(t2−t0)
δt

p
)
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Let p
δt
= ϕ then the above becomes

P (X = x|Z = n) =
(
((t1 − t0)ϕ)x

x! e−((t1−t0)ϕ)
)(

((t2 − t1)ϕ)n−x

(n− x)! e−((t2−t1)ϕ)
)

n!
((t2 − t0)ϕ)n e−((t2−t0)ϕ)

=
(
(t1ϕ− t0ϕ)x

x! e−t1ϕ+t0ϕ

)(
(t2ϕ− t1ϕ)n−x

(n− x)! e−t2ϕ+t1ϕ

)
n!

(t2ϕ− t0ϕ)n e−t2ϕ+t0ϕ

=
(
(t1ϕ− t0ϕ)x

x! e−t1ϕ+t0ϕ

)(
(t2ϕ− t1ϕ)n−x

(n− x)! e−t2ϕ+t1ϕ

)
n!

(t2ϕ− t0ϕ)n
et2ϕ−t0ϕ

=
(
(t1ϕ− t0ϕ)x

x!

)(
(t2ϕ− t1ϕ)n−x

(n− x)!

)
n!

(t2ϕ− t0ϕ)n
e(t2ϕ−t0ϕ−t1ϕ+t0ϕ−t2ϕ+t1ϕ)

=
(
(t1ϕ− t0ϕ)x

x!

)(
(t2ϕ− t1ϕ)n−x

(n− x)!

)
n!

(t2ϕ− t0ϕ)n
e(0)

=
(
(t1ϕ− t0ϕ)x

x!

)(
(t2ϕ− t1ϕ)n−x

(n− x)!

)
n!

(t2ϕ− t0ϕ)n

= n!
x! (n− x)!

(t1ϕ− t0ϕ)x (t2ϕ− t1ϕ)n−x

(t2ϕ− t0ϕ)n

We see that the parameter ϕ will occure in the numerator and denomerator with the same
powers, hence we can factor it out and cancel it. Hence we obtain

P (X = x|Z = n) = n!
x! (n− x)!

(t1 − t0)x (t2 − t1)n−x

(t2 − t0)n

Hence

P (X = x|Z = n) =
(
n

x

)
(t1−t0)x(t2−t1)n−x

(t2−t0)n

P (X = x|Z = n) = n!
x! (n− x)!

(
(λx)x e−λx

) (
(λy)n−x e−λy

) eλz

(λz)n

But we found that λz = λx + λy, hence the exponential term above vanish and we get
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P (X = x|Z = n) = n!
x! (n− x)!

(λx)x (λy)n−x

(λz)n

=
(
n

x

)
(λx)x (λy)n−x

(λz)n

=
(
n

x

)
(λx)x (λy)n−x

(λx + λy)n

=
(
n

x

)
(λx)x (λy)n−x

(λx + λy)x (λx + λy)n−x

=
(
n

x

)
(λx)x

(λx + λy)x
(λy)n−x

(λx + λy)n−x

=
(
n

x

)(
λx

λx + λy

)x(
λy

λx + λy

)n−x

Let k = λx

λx+λy
, then 1− k = 1− λx

λx+λy
= λx+λy−λx

λx+λy
= λy

λx+λy
hence the last line above can be

written as

P (X = x|Z = n) =
(
n

x

)(
λx

λx + λy

)x(
1− λx

λx + λy

)n−x

=
(
n

x

)
(k)x (1− k)n−x

But this is a Binomial with parameters n, k, hence

P (X = x|Z = n) = Binomial
(
n, λx

λx+λy

)

Figure 4.36: Problem 3
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4.4 Quiz 4

Local contents
4.4.1 Graded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

Figure 4.37: Problem 1

Let f(x) be the pdf of X, hence from definition of expected value of a random variable we
write

E(X) =
∫ ∞

−∞
xf(x) dx

Now break the integral into the sum of integrals as follows

E(X) = · · ·+
∫ ξ−δ

ξ−2δ
xf(x) dx+

∫ ξ

ξ−δ

xf(x) dx+
∫ ξ+δ

ξ

xf(x) dx+
∫ ξ+2δ

ξ+δ

xf(x) dx+ · · ·

In the limit, as δ is made very small, the above can be written as Riemann sums of areas
each of width dx → δ as follows

E(X) = · · ·+ (ξ − 2δ) f(ξ − 2δ) δ + (ξ − δ) f(ξ − δ) δ + ξfξδ +
(ξ + δ) f(ξ + δ) δ + (ξ + 2δ) f (ξ + 2δ) δ + · · ·

= δ[· · · (ξ − 2δ) f(ξ − 2δ) + (ξ − δ) f(ξ − δ) + ξfξ +
(ξ + δ) f(ξ + δ) + (ξ + 2δ) f (ξ + 2δ) + · · · ]

= δ[· · ·+ (ξf(ξ − 2δ)− 2δf(ξ − 2δ)) + (ξf(ξ − δ)− δf(ξ − δ)) +
ξfξ + (ξf(ξ + δ) + δf(ξ + δ)) + (ξf (ξ + 2δ) + 2δf (ξ + 2δ)) + · · · ] (1)
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But due to symmetry around ξ then

f(ξ − iδ) = f(ξ + iδ)

for any integer i in the above Riemann sum. This causes terms to cancel in the equation (1)
above.

For example the term −δf(ξ − δ) onthe left of the ξfξ will cancel with the term +δf(ξ − δ)
on the right of ξfξ, and so on. Then we obtain the following sum

E(X) = δ[· · ·+ ξf(ξ − 2δ) + ξf(ξ − δ) + ξfξ + ξf(ξ + δ) + ξf (ξ + 2δ) + · · · ]

Take ξ as common factor

E(X) = ξδ[· · ·+ ξf(ξ − 2δ) + ξf(ξ − δ) + ξfξ + ξf(ξ + δ) + ξf (ξ + 2δ) + · · · ] (2)

But

δ[· · ·+ ξf(ξ − 2δ) + ξf(ξ − δ) + ξfξ + ξf(ξ + δ) + ξf (ξ + 2δ) + · · · ]

is just the total area under f(x) in the Riemann sum sense i.e.
∫∞
−∞ f(x) dx.

Hence (2) becomes

E(X) = ξ

∫ ∞

−∞
f(x) dx

But since f(x) is a density, this area is one. Hence

E(X) = ξ

Figure 4.38: Problem 2



chapter 4. quizes 305

The density function of an exponential distribution with parameter λis given by

f(x) =
{

λe−λx x ≥ 0
0 x < 0

First find the expected values of an exponential random variable X. From definition of
expected value:

E(X) =
∫ ∞

0
xf(x) dx

= λ

∫ ∞

0
xe−λxdx

integrate by parts gives

E(X) = λ

([
xe−λx

−λ

]∞
0
+ 1

λ

∫ ∞

0
e−λxdx

)
= −

[
xe−λx

]∞
0 +

∫ ∞

0
e−λxdx

= 0− 1
λ

[
e−λx

]∞
0

= 1
λ

Hence E(X) = 1
λ
, Hence we need to find ∆ = P

(∣∣X − 1
λ

∣∣ > 2
λ

)
, But this is the same as

finding

∆ = 1− P

(∣∣∣∣X − 1
λ

∣∣∣∣ ≤ 2
λ

)
= 1− P

(
X <

3
λ

)
= 1−

∫ 3
λ

0
f(x) dx

= 1−
∫ 3

λ

0
λe−λxdx

= 1−
(
1− 1

e3

)
= 1

e3
= 0.04 978 7
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Now compare to Chebyshev bound. Chebyshev bound says that

P (|X − E(X)| ≥ t) ≤ V ar(X)
t2

(1)

Hence the upper bound by Chebyshev is V ar(X)( 2
λ

)2 . We now need to find V ar(X) and this is
given by

V ar(X) = E
(
X2)− [E(X)]2

But

E
(
X2) = ∫ ∞

0
x2f(x) dx =

∫ ∞

0
x2λe−λxdx

= λ

[
−1
λ

[
x2e−λx

]∞
0 + 2

λ

∫ ∞

0
xe−λxdx

]
=
[
−1[0] + 2

∫ ∞

0
xe−λxdx

]
= 2

∫ ∞

0
xe−λxdx

= 2
[
−1
λ

[
xe−λx

]∞
0 + 1

λ

∫ ∞

0
e−λxdx

]
= 2
[
0 + 1

λ

[
e−λx

−λ

]∞
0

]
= 2
[
− 1
λ2

[
e−λ∞ − e0

]]
= − 2

λ2 [0− 1]

= 2
λ2

so

V ar(X) = 2
λ2 −

[
1
λ

]2
= 1

λ2

Hence (1) becomes

P

(
|X − E(X)| ≥ 2

λ

)
≤

1
λ2

4
λ2

= 0.25

Hence an upper bound for the probability by Chebyshev is 0.25, and the actual probability
found was 0.04 978 7 which is well within this bound.
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Figure 4.39: Problem 3

Let ∆ =
∞∑
k=1

P (X ≥ K), we need to show that this equals E(X)

∆ =
∞∑
k=1

P (X ≥ K)

= P (X ≥ 1) + P (X ≥ 2) + P (X ≥ 3) + · · ·

But
P (X ≥ 1) = P (X = 1) + P (X = 2) + P (X = 3) + · · ·

and

P (X ≥ 2) = P (X = 2) + P (X = 3) + P (X = 4) + · · ·

and

P (X ≥ 3) = P (X = 3) + P (X = 4) + P (X = 5) + · · ·

and so on. Hence adding all the above we obtain repeated terms, which comes out as follows

∆ = P (X ≥ 1) + P (X ≥ 2) + P (X ≥ 3) + · · ·
= [P (X = 1) + P (X = 2) + P (X = 3) + · · · ]
+ [P (X = 2) + P (X = 3) + P (X = 4) + · · · ]
+ [P (X = 3) + P (X = 4) + P (X = 5) + · · · ]
+ · · ·
= P (X = 1) + 2P (X = 2) + 3P (X = 3) + 4P (X = 4) + · · ·

=
∞∑
k=1

k P (X = k)
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But this is the definition of E(X), hence ∆ = E(X)

Figure 4.40: Problem 4

X is Number of trials needed to obtain r successes, Each trial has p chance of success.

Let Y1 be a random variable which represents the number of trials to obtain a success
(counting the success trial) (This will be the first success).

Let Y2 be a random variable which represents the number of trials to obtain a success (this
will be the second success so far)

Let Y3 be a random variable which represents the number of trials to obtain a success (this
will be the third success so far)

and so on. Hence

Let Yi be a random variable which represents the number of trials to obtain the ith success.

Therefore

X = Y1 + Y2 + · · ·+ Yr

=
r∑

k=1

Yr

Hence

E(X) = E

(
r∑

k=1

Yr

)
(1)

=
r∑

k=1

E(Yr)

But a Geometric r.v. represents the number of trials needed to obtain a success (counting
the success trial), with each trial having p chance of success. So we need to find E(Y ) where
Y is a Geometric r.v. with parameters p
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E(Y ) =
∞∑
k=1

kP (X = K)

But
P (Y = K) = p(1− p)k

Hence

E(Y ) =
∞∑
k=1

kp(1− p)k = p
∞∑
k=1

k(1− p)k

= p

(
1− p

p2

)
= 1−p

p
(2)

Substitute (2) into (1)

E(X) =
r∑

k=1

1− p

p

= 1− p

p

r∑
k=1

1

= r
(

1−p
p

)

ρU,V = Cov(U, V )√
V ar (U)V ar (V )

(1)

But
Cov(U, V ) = E(UV )− E(U)E(V )

and

E(U) = E(a+ bX) = E(a) + E(bX)
= a+ bE(X)
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and

E(V ) = E(c+ dY ) = E(c) + E(dY )
= c+ dE(Y )

so

Cov(U, V ) = E[(a+ bX) (c+ dY )]− [a+ bE(X)] [c+ dE(Y )] (2)

and
V ar(U) = V ar(a+ bX) = b2V ar(X) (3)

and
V ar(V ) = V ar(c+ dY ) = d2V ar(Y ) (4)

Substitute (2),(3),(4) into (1) we obtain

ρU,V = E[(a+ bX) (c+ dY )]− [a+ bE(X)] [c+ dE(Y )]√
b2V ar (X) d2V ar (Y )

= E[ac+ adY + cbX + bXdY ]− (ac+ adE(Y ) + cbE(X) + bdE(X)E(Y ))
|bd|

√
V ar (X)V ar (Y )

= ac+ adE(Y ) + cbE(X) + bdE(XY )− ac− adE(Y )− cbE(X)− bdE(X)E(Y )
|bd|

√
V ar (X)V ar (Y )

= bdE(XY )− bdE(X)E(Y )
|bd|

√
V ar (X)V ar (Y )

= bd[E(XY )− E(X)E(Y )]
|bd|

√
V ar (X)V ar (Y )

Now cancel bd term. So depending if bd < 0 or bd > 0 we obtain −ρX,Y or +ρX,Y

Hence if we consider absolute sign of bd we write

|ρU,V | = |ρX,Y |
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4.4.1 Graded
19/20

'-....-.--
QUIZ -! 1vIATH 502AB Fall 2007

'-"

N nmc (plea8c print) Nasser Abbasi

1. Let X bc a continuous random variable with a pdf that is :,ymmetric about a point ~.

Proyiclcd that E(X) exist::>, :,how that E(X) = ~.

Let f (x) be the pdf of X, hence from definition of expected value of a random variable we
write

E(X) = 1: xf(x)dx

Now break the integral into the sum of integrals as follows

1
~-" 1~ l~H 1~+28E (X) = ... + xf (x) dx + xf (x) dx + xf (x) dx + xf (x) dx + ...

~-2" ~-" ~ ~+"

In the limit, as 5 is made very small, the above can be written as Riemann sums of areas each
of width dx -7 5 as follows

E (X) = ... + (~ - 25) f(~ - 25) 5 + (~- 5) f (~ - 5) 5 + ~fe5 +

(~ + 5) f (~ + 5) 5 + (~+ 25) f (~+ 25) 5 + ...

= 5 [... (~ - 25) f (~ - 25) + (~- 5) f (~ - 5) + ~f~ +
(~ + 8) f (~ + 5) + (~+ 28) f (~+ 25) + ... ]

= 5 [... + (~f (~- 28) - 25f (~- 25)) + (~f (~- 8) - 5f (~- 5)) +
~ fe + (~f (~ + 5) + 8f (~ + 5)) + (~f (~+ 28) + 25 f (~+ 25)) + ... ] (1)

But due to symmetry around ~ then

f (~ - i5) = f (~ + i5)

for any integer i in the above Riemann sum. This causes terms to cancel in the equation (1)
above.

For example the term -5f (~ - 8) onthe left of the ~fe will cancel with the term +5f (~ - 5)
on the right of ~f~, and so on. Then we obtain the following sum

E (X) = 5 [... + ~f (~ - 25) + ~f (~ - 5) + ~f~ + ~f (~ + 5) + ~f (~+ 25) + ... ]

Take ~ as common factor

1
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- -

....J(~ - 25) + \<Jt (~ - 5) +~+ \~f (~ + 5) + (tif (U 25) +··1 (2)
(

E (X) = ~<5 [... +

But

<5 [... + ~f (~ - 26) + ~f (~ - 6) + U~ + ~f (~ + 6) + ~f (~+ 26) + ... ]

is just the total area under f (x) in the Riemann sum sense i.e. f~CXJ f (x) dx.
Hence (2) becomes \

E(X)=~l:f(x)dx ':.J ~~

But since f (x) is a density, this area is one. Hence b~~ lJ P
!E(X) = ~I X'b ¥

~

,~
G~q... \Y Or

~ ~o
~ "\ if)
~ v</ Q) J( I

()- 0 ~ I jY ,~
~c" ~. \1\

~.r.~-\: ~
?(S~

-----./ ~

-.J

2
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2. Let X be an exponential random variable with parameter /\. Find

P [IX - E(X)I > ~]

and compare your result to the Chebyshev's bow1c1.

The density function of an exponential distribution with parameter >'is given by

I (x) = {>.e-
AX

x 2: 0
o x < 0

First find the expected values of an exponential random variable X. From definition of expected
value:

E (X) = 100

xl (x) dx

= >.100

xe-AXdx

integrate by parts gives

E (X) = >. ([x~-;X]~ + ~100

e-AXdx)

= - [xe-AXJ;' +100

e-AXdx

= 0 - ~ [e-AXJ;'
1

>.

Hence IE (X) = t I, Hence we need to find b.
finding

p (IX -- t I> 1), But this is the same as

b. = 1- p (Ix - ~I ~ I)
= 1- P (x < 1)

3

= 1-1>: I(x)dx

3

= 1 - 1). >.e-AXdx

= 1- (1 ---~) = ~ = 10.0497871
e3 e3

3

v
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Now compare to Chebyshev bound. Chebyshev bound says that

P(IX - E (X)I ~ t) ::; VaT (X) (1)

J

Hence the upper bound by Chebyshev is V(i)~). We now need to find Var (X) and this is

given by
VaT (X) = E (X2) - [E (X)]2

But

E (X2) =100

x2f (x) dx =100

x2)..e->'xdx

[
-1 00 2 roo ]

=).. T [x2e->'x]° + >: in xe->'Xdx

= [-1[0] + 2100

xe->'Xdx]

= 2100

xe->'Xdx

= 2[~1 [xe->''']: + ~100

e->'Xdx]

[
1 [e->.X]OO]

= 2 0 + >: _)..-- °

= 2 [- ;2 [e->'oo - eO]]

2
= - )..2 [0 -1]

2
)..2

--J -

so

Hence (1) becomes

2 [1]2Var(X) = )..2 - >:

=1 >.\ I v
P (IX - E(X)I ~ 1) ::; ~ =10.251

Hence an upper bound for the probability by Chebyshev is 0.25, and the actual probability
found was 0.049787 which is well within this bound.

4

---.../
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'--.,..; :3. If X is a discrete random variable, taking values on the positive integerb. then 8hO\\'

that E(X) = I:ZC=I P(X 2 k).

00

Let .6. = I: P (X 2: K), we need to show that this equals E (X)
k=l

00

.6. = L P (X 2: K)
k=l

= P (X 2: 1) + P (X 2: 2) + P (X 2: 3) + ...

But
P (X 2: 1) = P (X = 1) + P (X = 2) + P (X = 3) + ...

and

P (X 2: 2) = P (X = 2) + P (X = 3) + P (X = 4) + ...
and

P (X 2: 3) = P (X = 3) + P (X = 4) + P (X = 5) + ...
and so on. Hence adding all the above we obtain repeated terms, which comes out as follows

"---"

~

.6. = P (X 2: 1) + P (X 2: 2) + P (X 2: 3) + .
= [P (X = 1) + P (X = 2) + P (X = 3) + ]
+ [P (X = 2) + P (X = 3) + P (X = 4) + ]
+ [P (X = 3) + P (X = 4) + P (X = 5) + ]
+ ...
= P (X = 1) + 2P (X = 2) + 3P (X = 3) + 4P (X = 4) + ...

00

= Lk P(X = k)
k=l

But this is the definition of E (X), hence .6. = E (X)

5

/
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..1. Find the mean of a negative binomial random variable X with parameters rand p. by
expre::.::.ing X a~ ;,um of indicator variablcs.

X is Number of trials needed to obtain r successes, Each trial has p chance of success.
Let Yi be a random variable which represents the number of trials to obtain a success (counting

the success trial) (This will be the first success).
Let 1'2 be a random variable which represents the number of trials to obtain a success (this

will be the second success so far)
Let 1'3 be a random variable which represents the number of trials to obtain a success (this

will be the third success so far)
and so on. Hence
Let Yi be a random variable which represents the number of trials to obtain the i th success.
Therefore

x =Yi + 1'2 + .... + 1~.

r

=L~
k=l

Hence

....J

E (X) ~ E (i=,v.)
r

= LE(~)
k=l

(1)

..J;;

But a Geometric r.v. represents the number of trials needed to obtain a success (counting the
success trial), with each trial having p chance of success. So we need. to find E (Y) where Y is a
Geometric r.v. with parameters p

<Xl

E(Y) = LkP(X = K)
k=l

P (Y = K) = p (1 _ p)k

/\
But

Hence

<Xl <Xl

E (Y) = L kp (1 - p)k = pL k (1 _ p)k
k=l k=l

6

(2)
-J
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L

~=
1="1d
{7_­
~d-I .L

d1="1

d-I~=(X)~
.L
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_ bdE (XY) - bdE (X) E (Y)

- Ibdl JVar (X) Var (Y)
bd [E (XY) - E (X) E (Y)]

- Ibdl JVar (X) Var (Y)

5. If U = Q + bX anel 11 = c + elY, show that Ipn·1 = IPo\TI. J

Cov (U, V)
(1)Puv =

, JVar (U) Var (V)

But
Cov (U, V) = E (UV) - E (U) E (V)

and

E(U) = E(a+bX) = E(a) +E(bX)

= a+bE(X)

and

E (V) = E (c + dY) = E (c) + E (dY)
= c+dE(Y)

so

Cov (U, V) = E [(a + bX) (c + dY)] - [a + bE (X)] [c + dE (Y)] (2)

and
Var (U) = Var (a + bX) = b2Var (X) (3)

and
J

Var (V) = Var (c + dY) = d2Var (Y) (4)

Substitute (2),(3),(4) into (1) we obtain

E [(a + bX) (c + dY)] - [a + bE (X)] [c + dE (Y)]
PU,v = Jb2Var (X) d2Var (Y)

_ E lac + adY + cbX + bXdY] - (ac + adE (Y) + cbE (X) + bdE (X) E (Y))

- Ibdl JVar (X) Var (Y)

ac + adE (Y) + cbE (X) + bdE (XY) - ac - adE (Y) - cbE (X) - bdE (X) E (Y)

- jbdl JVar (X) Var (Y)

\P6( 'V\ 100

Now cancel bd term. So depending if bd < 0 or bd > 0 we obtain -PX,Y or +PX,Y
Hence if we consider absolute sign of bd we write

Ipu,vl = IPx,Y1

8
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4.5 Quiz 5
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Figure 4.41: Problem 1

(a) Consider

MW (t) = E
(
ewt
)

= E
(
e(u+v)t) = E

(
eutevt

)
But since U ⊥ V then the above reduces to

MW (t) = E
(
eut
)
E
(
evt
)

= MU(t)MV (t)

Hence

MU(t) =
MW (t)
MU (t) = (1− 2t)−

n
2

(1− 2t)−
1
2

= (1− 2t)−
n
2+

1
2

= (1− 2t)−
(n−1)

2

Hence
Uχ2with(n− 1) degrees of freedom
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(b)

E(W ) = E(U + V )
= E(U) + E(V )

Now use the moment generation function to find the expectations of U and V.

Need to find M ′
X(t) where MX(t) = (1− 2t)−

m
2 where m is the degree of freedom

d

dt
MX(t) =

d

dt
(1− 2t)−

m
2

= −m

2 (1− 2t)−
m
2 −1 (−2)

Hence

M ′(t) = m(1− 2t)−
m
2 −1 (1)

at t = 0 the above becomes

M ′
X(0) = m

For U , we found that m = (n− 1), hence

E(U) = (n− 1)

and for V we are told its degree of freedom is m = 1 hence

E(V ) = 1

Therefore
E(W ) = (n− 1) + 1

Hence

E(W ) = n
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Now

V ar(W ) = E
(
W 2)− [E(W )]2

= E
(
W 2)− n2

= E
(
(U + V )2

)
− n2

= E
((
U2 + V 2 + 2UV

))
− n2

= E
(
U2)+ E

(
V 2)+ 2E(UV )− n2

But U ⊥ V so the above becomes

V ar(W ) = E
(
U2)+ E

(
V 2)+ 2E(U)E(V )− n2

Lets find E(Z2) for a Z chi square random variable of degree of freedom m. We already
found M ′(t) above in (1)

E
(
Z2) = M

′′

Z(t)
∣∣∣
t=0

= d

dt
(M ′

Z(t))

= d

dt

(
m(1− 2t)−

m
2 −1
)

= m
((

−m

2 − 1
)
(1− 2t)−

m
2 −2 (−2)

)
At t = 0

E
(
Z2) = −2m

(
−m

2 − 1
)

Hence

E
(
Z2) = m(m+ 2) (2)

Hence using (2) above, we now can find E(U2) and E(V 2)

For U it has degree of freedom m = (n− 1), hence

E(U2) = (n− 1) ((n− 1) + 2)
= n2 − 1
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For V it has degree of freedom m = 1, hence

E(V 2) = 1× (1 + 2)
= 3

Hence

V ar(W ) =
(
n2 − 1

)
+ 3 + 2(n− 1)× 1− n2

= n2 − 1 + 3 + 2n− 2− n2

Hence
V ar(W ) = 2n

Figure 4.42: Problem 2

X(x) λ
xe−λ

x!

Moment generating function for a Poisson r.v. or parameter λ is (from page 144)

MX(t) = e−λee
tλ

Now

MY (t) = E
(
eyt
)

= E
(
e
√
xt
)

Hence

M ′
Y (t) = E

(√
xe

√
xt
)

and
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M ′′
Y (t) = E

(√
x
√
xe

√
xt
)

= E
(
xe

√
xt
)

Therefore

M ′′
Y (0) = E(x)

But

E(x) = M ′
X(t)|t=0

= λ

Hence
M ′′

Y (0) = λ

But
M ′′

Y (0) = E
(
Y 2)

then

E(Y 2) = λ

Now to find V ar(Y )

V ar(Y ) = E
(
Y 2)− [E(Y )]2

Where

E(Y ) = M ′
Y (0)

= E
(√

x
)

So we need to find E
(√

x
)
to complete the solution.
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E
(√

x
)
=

∞∑
x=0

√
x
λxe−λ

x!

= 0 + λe−λ

1! +
√
2λ

2e−λ

2! +
√
3λ

3e−λ

3! +
√
4λ

4e−λ

4! + · · ·

= e−λ

(
λ+

√
2λ

2

2! +
√
3λ

3

3! +
√
4λ

4

4! + · · ·
)

= λe−λ

(
1 + 1√

2
λ+ 1√

3
λ2

2! +
1√
4
λ3

3! +
1√
5
λ4

4! + · · ·
)

= λe−λ

1 + λ√
2
+ 2√

3

(
λ√
2

)2
2! + 2

√
2√
4

(
λ√
2

)3
3! + 4√

5

(
λ√
2

)4
4! + · · ·


= λe−λ

1 + λ√
2
+ 1. 154 7

(
λ√
2

)2
2! + 1. 414 2

(
λ√
2

)3
3! + 1. 788 9

(
λ√
2

)4
4! + · · ·


' λe−λ

(
e

λ√
2

)
= λe

λ√
2−λ = λe

λ(1−
√

2)√
2

Hence

V ar(Y ) = λ−
[
λe

λ(1−
√

2)√
2

]2
= λ− λ2e

2λ(1−
√

2)√
2

= λ− λ2e
√
2λ(1−

√
2)

Hence

V ar(Y ) ' λ
(
1− λe−0.585 78λ)

Figure 4.43: Problem 3
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(a)

fY (y) =
λα

Γ (α)y
α−1e−λy y ≥ 0

f(X|Y=y)(x|y) =
(y2)x e−y2

y! x = 0, 1, 2, · · ·

Now

E(X) = E(E(X|Y ))

But E(X|Y ) is expectation of a Poisson r.v. with parameter Y 2. But we know that mean
of a poisson r.v. with parameter λ is λ. Hence E(X|Y ) = Y 2 since we are told Y 2 is the
parameter.

Hence
E(X) = E

(
Y 2)

But the moment generating function for Gamma is MY (t) =
(

λ
λ−t

)α (book page 145 second
edition).

Hence E(Y 2) = M ′′
Y (0) =

α(α+1)
λ2 (page 145)

Hence

E(X) = α(α+1)
λ2

(b)
V ar(X) = E

(
X2)− [E(X)]2 (1)

But

E
(
X2) = E

(
E
(
X2|Y

))
But E(X2|Y ) is E(X2) of a poisson r.v. with parameter Y 2. But we know that E(X2) of a
poisson r.v. with parameter λ is λ2 + λ (book page 144 example A). Hence since we are told
Y 2 is the parameter, then

E
(
X2|Y

)
=
(
Y 2)2 + Y 2

=
(
Y 4 + Y 2)
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Hence

E
(
X2) = E

(
Y 4 + Y 2)

= E
(
Y 4)+ E

(
Y 2)

But using mgf for Gamma distribution we can find E(Y 4).

M ′′′′
Y (t) = d4

dt4

(
λ

λ− t

)α

= α(6 + 11α + 6α2 + α3)
(t− λ)4

(
λ

λ− t

)α

Then
M ′′′′

Y (0) = α(6 + 11α + 6α2 + α3)
λ4

Therefore

E
(
X2) = α(6 + 11α + 6α2 + α3)

λ4 + α(α + 1)
λ2

Then (1) becomes

V ar(X) =
(
α(6 + 11α + 6α2 + α3)

λ4 + α(α + 1)
λ2

)
−
(
α(α + 1)

λ2

)2

= α(6 + 11α + 6α2 + α3)
λ4 + α(α + 1)

λ2 − α2(α + 1)2

λ4

Then

V ar(X) = α
λ4 (α + 1) (λ2 + 4α + 6)
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4.5.1 Graded
20/20

"--'

'-..,....;

N{k.~.s eY"'"/ J- Ct II"'-U(\'"J {~

XlA~+ ~e-vVLli~:j ~()"'- (/".
~krlofl. ~ ~ /lAo r

J October 20,2006I\IATH 502AB Ut ~-h 'r>-- .
QUIZ 5 r-e (.ell ((\ tl6l-t./ -J~~ n .... 11 h 1--t-.-<p0\..;t •

B-e br1 e1"" ~. NASSER ABBASI ~Name (plea::,e pnnt)

1. The moment generating function for a nmclom variable X having a \ 2 c1i::>tribution with
degree::> of freedom n 2 1 is l\lx(t) = (1- 2t)-1l/2. Let 1V have a \2 c1i::>tribution with
degree::> of freedom n > 1. and let 1/ have a A. 2 distribution with degrees of freedom 1. (a).
If 11' = U + V, and U and 1/ are independent, determine the distribution of U? (b). "'hat
arc the mean and variance of 11'?

(a) Consider

lUw (t) = E (eWL
)

= E (e(u+v)t) = E (eutcvt )

But since U 1- V then the above reduces to

Mw (t) = E (eut ) E (evt )

= M u (t) A1v (t)

Hence

Mw (t) = (1 - 2t)-:
Mu (t) = MV(t) (1 _ 2t)-2

n+l
= (1 - 2t)-2 '2

(n- 12= (1- 2t)--2

Hence
IU - X2 with (n - 1) degrees of freedom I

(b)

E (W) = E (U + V)

= E (U) + E (V)

Now use the moment generation function to find the expectations of U and V
Need to find M~ (t) where Mx (t) = (1 - 2t)-~ where m is the degree of freedom

d d m

-Mx (t) = - (1 - 2t)-2
dt dt

m ( )-!!!-l ( )= - -- 1 - 2t 2 - 2
2

Hence

1



chapter 4. quizes 328

1M' (t) = m (1 - 2t)-%,-11 (1) ----./

at t = 0 the above becomes

IM~ (0) = ml
For U, we found that m = (n -·1), hence

IE (U) = (n - 1) I

I
~

and for Y we are told its degree of freedom is m = 1 hence

IE(Y) = 11 /
Therefore

E (W) = (n - 1) + 1

Hence

IE(W) = nJ

--...-/

Yar(W) = E (W2) - [E (W)]2

= E (W2
) - n 2

= E ((U + y)2) _ n 2

= E ( (U2 + y 2 + 2UY)) _ n2

= E (U2
) + E (y2

) + 2E (UY) - n 2

':lilA
,"l J,
if~'

Now

But U ..l Y so the above oecomes

IYar(W) = E (U2) + E (y2
) + 2E (U) E (Y) - n21

Lets find E (Z2) for a Z chi square random variable of degree of freedom m. We already found
M' (t) above in (1)

E (Z2) = M; (t)!t=O

= ~ (lvl~ (t))

= ~ (m (1 - 2t)-%,-1)

= m ((- ; - 1) (1 - 2t)-~-2 (-2))

At t = 0

E (Z2) = -2m (- ; - 1) J

Hence

2



chapter 4. quizes 329

IE (Z2) = m (m + 2) I

Hence using (2) above, we now can find E (U2
) and E (V2

)

For U it has degree of freedom m = (n - 1), hence

E (U2
) = (n - 1) ((n - 1) + 2)

= n2 -1

For V it has degree of freedom m = 1, hence

E(V2
) = 1 x (1 + 2)

=3

Hence

Var(W) = (n2
- 1) + 3 + 2 (n - 1) x 1- n 2

= n2
- 1 + 3 + 2n - 2 - n2

(2)

Hence
IVar(W) = 2nl v

.ct
}J~

v1~,
1j)'fJO ('/

~ XtJ
)

~
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2. Find the approximate variance of Y = Jx, where X is a Poisson random variahle with
parameter /\.

x (x) _Axe->'
x!

Moment generating function for a Poisson LV. or parameter A is (from page 144)

Gii! (t) = e->'eet>.j

Now

My (t) = E (eyt
)

= E (e vlxt )

Hence

M~ (t) = E (VXevlxt)
and

M:; (t) = E (VXVXevlxt)

= E (xe vlxt )

Therefore

M:; (0) = E (x)

But

E (x) = M'x (t)lt=o
=A

Hence
M:; (0) = A

But
M:; (0) = E (y2

)

then

jE(y2) = AI
Now to find Var (Y)

VaT (Y) = E (y2) _ [E (y)]2

Where

4

---./

--/.

J
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'---'"

."-......../

M"" (t) = ~ (_,\_)0<
Y dt4,\ - t

= 0: (6 + 110: + 60:2 + 0:3 ) (_,\_)0<
(t_,\)4 '\-t

Then
M;;:' (0) = 0: (6 + 110: + 60:

2
+ 0:

3
)

,\4

Therefore

E (X2) = 0: (6 + 110: + 60:2+ 0:3
) 0: (0: + 1)

,\4 +,\2

Then (1) becomes

V (X) = (0:(6+110:+60:
2

+0:3
) 0:(0:+1)) _ (0:(0:+1))2

M ~ + ~ ~

0:(6+110:+60:2+0:3 ) 0:(0:+1) 0:2 (0:+1)2
= ,\4 +,\2 - ,\4

Then

IVar (X) = fr (0: + 1) (A2 + 40: + 6) I

~
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E (Y) = M~ (0)

= E (vx)

So we need to find E (vx) to complete the solution.

00 ).X ->.
E (VX) = L VX_e

_
x=O x!

).e->' _).2e ->' ).3e >. ).4e~>'

=0+-+V2--+V3 +J4--+---
I! 2! ! 4!

(

).2 ).3 ).4 )
= e->' ). + V2- + V3- + 4- + ...2! 3! 4!

= ).e->' (1 + _1_). +~ ).2 + _1_ ).3 + _1_ ).4 + )
V2 V3 2 J4 3! V5 4!

_). ->. (1 ~ ~ -$2r 2V2 (-$2r ~ (-$2r )
- e + V2 +...n 2! + J4 3! + V5 4! +

= ).e->· (1 +~ 1. 1547 (-$2r + 1. 414 2(-$2r + 1. 7889 (-$2r + ... )
V2 21 3! 4!

~ ).e->· (e~)

>. >. / >.(1-y'2)
= ).ev'2- = )/e~

Hence

Hence

Var (Y) = ). - [)./(l~t'25r

_ \ 2 2>.(1-y'2)
- /\ - ). e ";2

= ). _ ).2 eV2>'(1-.J2)

IVar (Y) ~ ). (1 - ).e-O.585 78>.) I

5
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3. The random variable 1- hab a Gamma dibtribution with parametcr~a and /\. Furthc1'lnor~.

aS~llmc that X giwn 1- ha::, a Poi::,::,on cbtribution with parameter 1"2. (a) Obtain E(X).
(b) Obtain 11ar(X).

-...../

(a)

.N"
fy (y) = __ yo.-le->'Y y > °

r(a) -
(y2t e-

y2

f(xIY=Y) (xly) = 1 x = 0,1,2" ..
y.

Now

E (X) = E (E (XIY))

But E (XIY) is expectation of a Poisson r.Y. with parameter y 2
• But we know that mean of

a poisson r.Y. with parameter). is ).. Hence E (XIY) = y 2 since we are told y 2 is the parameter.
Hence

E (X) = E (y2
)

'-"'.

(1)

C~tr (book page 145 second

vIE(X)=~I

Var (X) = E (X2) - [E (X)]2
(b)

But the moment generating function for Gamma is My (t) =
edition).

Hence E (y2 ) = Mfr (0) = o.(~tl) (page 145)
Hence

But

E (X 2
) = E (E (X2IY))

But E (X2 IY) is E (X2) of a poisson r.Y. with parameter y 2. But we know that E (X2) of a
poisson r.y. with parameter). is ).2 + ). (book page 144 example A). Hence since we are told y 2

is the parameter, then

E (X2 IY) = (y2)2 + y 2

= (y4 + y 2)

Hence

E (X2) = E (y4+ y2)

= E (y4) + E (y2) ,.

But using mgf for Gamma distribution we can find E (y4).

6



chapter 4. quizes 336

4.6 Quiz 6

Local contents
4.6.1 Graded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

Figure 4.44: Problem 1

By theorem B, chapter 6, "Mathematical Statistics and Data Analysis", 2nd edition, John
Rice, page 181, which states that the distribution of (n−1)S2

σ2 is a chi-square distribution with
n− 1 degrees of freedom.

Hence
V ar

(
(n− 1)S2

σ2

)
= V ar(tn−1)

Since n−1
σ2 is not random, then applying the property that V ar(c X) = c2V ar(X) when c is

not random to the above, where in this case c = (n−1)
σ2 and rearranging, we obtain

V ar
(
S2) = σ4

(n− 1)2
V ar(tn−1)

However, V ar(tn−1) = 2(n− 1) 1, hence

V ar
(
S2) = 2 σ4

n− 1
1I found V ar(tn−1) from Chi-square moment generation function. Since M(tn) = (1 − 2t)−n

2 , then
M(tn−1) = (1 − 2t)−n−1

2 and then V ar(tn−1) = E
(
t2
)
− E(t)2 = M ′′(0) − [M ′(0)]2 which comes out to

2(n− 1)
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Figure 4.45: Problem 2

Let

Sn = 1
n

n∑
i=1

|Xi|

Find moment generation function

MSn(t) = E(e
t
n

n∑
i=1

|Xi|

)

= E
(
Πe t

n
|Xi|
)

= ΠE
(
e

t
n
|Xi|
)

=
[
M|X|

(
t

n

)]n

To find M|X|
(
t
n

)
, and noting that µ = 0 and σ = 1 we obtain2

M|X|

(
t

n

)
= 1√

2π

∫ ∞

−∞
e

t
n
|x|e

−x2
2 dx

Due to symmetry of normal distribution and since |x| is positive always the above can be
written as3

M|X|

(
t

n

)
= 2√

2π

∫ ∞

0
e

tx
n
−x2

2 dx

= e
t2
2n2

(
1 + erf

(
t√
2n

))
2I started by write log

(
MS

(
t
n

))
= n log

(
M|X|

(
t
n

))
and then expanding log

(
M|X|

(
t
n

))
around t = 0

using taylor series. But due to the absolute x present, I was not sure I was doing it correctly so I changed to
using the integral approach.

3Please note that I used Mathematica for solving this integral and the limit. I need to learn better how
to do this by hand using the Log expansion?
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Hence
MSn(t) =

[
e

t2
2n2

(
1 + erf

(
t√
2n

))]n

The limit of the above as n → ∞ is e
√

2
π
t. Therefore

MSn(t) = e

√
2
π
t

We see now that E(Sn) = M ′(0) =
√

2
π
and E(S2

n) = M ′′(0) = 2
π
, therefore V ar(Sn) =

2
π
−
(√

2
π

)2
= 0. (this means all sums add to same value for large n, did I make a mistake?

I did not expect this). Hence

Sn
in distribution→ N

(√
2
π
, 0
)

Figure 4.46: Problem 3

For pivotal term use (n−1)s2
σ2 ∼ χ2

(n−1), where s2 is sample variance σ2 is population variance,
and hence we write (following class notes on 10/29/07) the confidence interval as

P [−zp < θ < zp] = 1− α

Where from table A7, zp = 1.96 for normal r.v. at 95% and Where θ =
(n−1)s22

σ2
2

(n−1)s21
σ2
1

Hence the C.I. becomes

P

[
−1.96 <

σ2
1s

2
2

σ2
2s

2
1
< 1.96

]
= 1− α

P

[
−1.96s

2
1
s22

<
σ2
1

σ2
2
< 1.96s

2
1
s22

]
= 1− α

Where the sample variance s22 = 1
n−1

∑n
i=1
(
Xi − X̄

)2, and s21 = 1
n−1

∑n
i=1
(
Yi − Ȳ

)2
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For 95% confidence, α = 0.05. Hence the the final answer for the C.I. is

P

[
−1.96s

2
1
s22

<
σ2
1

σ2
2
< 1.96s

2
1
s22

]
= 0.95

Not sure what more I can do with the above so I think I will stop here.

Figure 4.47: Problem 4

First find the joint density of X,Y . Since X,Y are independent, then the joint density
fX,Y (x, y) = fX(x) fY (y) over −∞ < x < ∞ and y > 0

But fX(x) = 1√
2πσe

−(x−µ)2

2σ2 and fY (y) = λe−λy, hence the joint density is (after substituting
for µ = 0, σ2 = 2, λ = 1 is

fX,Y (x, y) = 1
2
√
π
e

−x2
4 e−y −∞ < x < ∞, y > 0

Now Let Z = X√
Y
, and let U = Y

Hence
fZ,U(z, u) = |J | fX,Y (z, u) (1)

Where

J = det
[

∂Z
∂X

∂Z
∂Y

∂U
∂X

∂U
∂Y

]
= det

[
1√
Y

−X
2
√
Y

0 1

]

=
√

1
Y

so ∣∣J−1∣∣ = √
Y =

√
U

Hence, from (1) and substitute X = Z
√
U and Y = U , we obtain

fZ,U(z, u) =
√
u

1
2
√
π
e

−z2u
4 e−u
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Hence the marginal density
fZ(z) =

∫∞
0 fZ,U(z, u) du

Then

fZ(z) =
1

2
√
π

∫ ∞

0
u

1
2 e

−z2u−4u
4 du

= 1
2
√
π

∫ ∞

0
u

1
2 e

−
(
1+ z2

4

)
u
du

Now Gamma distribution is f(w) = λα

Γ(α)w
α−1e−λw, hence if we replace λ = 1+ z2

4 and α = 3
2 ,

then we have

fZ(z) =
1

2
√
π

Γ(α)
λα

=1︷ ︸︸ ︷∫ ∞

0

λα

Γ (α)w
α−1e−λw dw

= 1
2
√
π

Γ(α)
λα

To simplify further,

fZ(z) =
1

2
√
π

Γ
(3
2

)
(
1 + z2

4

) 3
2

But Γ
(3
2

)
=

√
π
2 , hence

fZ(z) = 1
4

(
1 + z2

4

)− 3
2

Hence the pdf of X√
Y
is

fX,Y (x, y) =
1
4

(
1 + x2

4y

)− 3
2

To verify this is a pdf, I integrate it from −∞ to +∞ to see if I get 1:
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Figure 4.48: verify

Here is a plot of the distribution

Figure 4.49: plot of the distribution

Another attempt at problem (2)
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X̄n = 1
n

n∑
i=1

Xi

∣∣X̄n

∣∣ = ∣∣∣∣∣ 1n
n∑

i=1

Xi

∣∣∣∣∣
≤ 1

n

n∑
i=1

|Xi| (1)

By definition, the CDF of
∣∣X̄n

∣∣ is
F∣∣X̄n

∣∣(∣∣X̄n

∣∣ = c
)
= P

(∣∣X̄n

∣∣ < c
)

= P
(
−c < X̄n < c

)
= P

(
−c− µ

σ/
√
n

<
X̄n − µ

σ/
√
n

<
c− µ

σ/
√
n

)

Since µ = 0, σ = 1 we obtain

F∣∣X̄n

∣∣(∣∣X̄n

∣∣ = c
)
= P

(
−c

1/
√
n
<

X̄n

1/
√
n
<

c

1/
√
n

)
(2)

Now I need to combine (1) and (2). I am not sure how.

But central limit theorem tells us that as n gets large, the distribution of the sample mean X̄n

approach normal distribution with mean µ and variance σ2

n
, hence X̄n

in distribution→ N
(
µ, σ

2

n

)
,

hence the above becomes

F∣∣X̄n

∣∣(∣∣X̄n

∣∣ = c
)
' Φ

(
c
√
n
)
− Φ

(
−c

√
n
)

4.6.1 Graded
15/20
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Name (please print) NASSER ABBASI

"---./

Ql-IZ 6 f\IATII 502AB Octobel' 30, 2006

Iu solving the problems below. you can use all the results that we have derived
in class. You do not Heed to re-derive results. Make sure to cite the results that
you use.

1. Let Xl' .... X I1 be jjd random variables from a N(/-l. (72). and S2 be the sample vanance.
What j;:, Var(S2)?

By theorem B, chapter 6, "Mathematical Statistics and Data Analysis", 2nd edition, John
llice, page 181, which states that the distribution of (n-~VS2 is a chi-square distribution with n - 1
degrees of freedom.

Hence

(
(n - 1) 52)

Var (J'2 = Var (tn-I)

Since :-;1 is not random, then applying the property that Var (c X) = c2Var (X) when c is
not random to the above, where in this case c = (n(J'--;I) and rearranging, we obtain

'-'

(J'4

Var (52) = 2 Var (tn-I)
(n -1)

However, Var (tn-I) = 2(n - 1)1, hence

~r(52) =25[
/

1I found Var (tn-I) from Chi-square moment generation function. Since M (tn) = (1- 2t) -2" , then M (tn-I) =

(1- 2t) -'~-l and then Var (tn-I) = E (t2) - E (t)2 = Mil (0) - [M' (O)f which comes out to 2 (n - 1)

1
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2. Let Xl \ .... X Il be iicl'raJldom v/hiables from a
c1i::,tri but ion of

~LIXii
MSn (t) = E(e i=l )

= E (TIe~IXil)

= TIE (e~IXil)

= [~XI (~)]n

Let

Find moment generation function

11

(lin) 2: IXil·
i=l

1 n

Sn = -LIXil
n i=l

n

0, l). Determi~ the asymptotic

cY'

\\~~/
'J:~'

bl.. \

V,,/?O#," ..

-----./

To find Mixi (;,), and noting that 1-£ = 0 and (J" = 1 we obtain2

(
t ) 1 100

t I I _x
2

MIXI - = -- e;; x e-2-dx
n V2i-00

Due to symmetry of normal distribution and since Ixl is positive always the above can be
written as3

~

jrr; MIXI (;;) = ~ f e~-('" 7))
= e;f;:x (1 + erf V2n

Hence

Msn(t) = [e~ (l+erf(~n))]n

The limit of the above as n - 00 is ev1t
. Therefore

IM Sn (t) = ev1t I

~ -t.
eAt>" <~L"'-J.?'

/)~.
xli>

21 started by write log (Ms (~)) = nlog (.IIi1x ! (~)) and then expanding log (Mlxl (~)) around t = 0 using
taylor series. But due to the absolute x present., I was not sure I was doing it correctly so I changed to using the
integral approach. 0

3Please note that I used Mathematica for solving this integral and the limit. I need to learn better how to do
this by hand using the Log expansion?

2
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./

'-......--

?
vC ----~

We see 2now that E (SI1J = M' (0) = Vfr and E (S~) = Mil (0) = ~, therefo~ =

~ - (/Fr) = o. (this means all sums add to same value for large n, did I make a mistake? I did

not expect this). Hence

Sn in dis~ution N ( /Fr, 0)

3
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3 .. Let X j •· ..• X n be iid random variableI'> from a N(O, an and Yj,"', Y;) be iid random
variables from a N(O. ai). "Trite a 95% confidence interval for aI/ago

For pivotal term use (n-;;.;)s2 -XCn-l), where 8
2 is sample variance a2 is population variance, and

hence we write (following class notes on 10/29/07) the confidence interval as

p [-zp < () < zp] = 1 - a:

(n-~)s~

Where from table A7, zp = 1.96 for normal LV. at 95% and Where () = (n~~)s2

~1

Hence the C.L becomes

-"

Not sure what more I can do with the above so

=1-0:

=1-0:

-..-/

~

4
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4. Let X rv N(O, 2) and Y '"V exponential(l). Provided that X is independent of Y, identify
the clistri bution of X/ /Y.

First find the joint density of X, Y. Since X, Y are independent, then the joint density
fx,y (x, y) = fx (x) fy (y) over -00 < x < 00 and y > 0

But fx (x) = vir(7e _(~~t)2 and fy (y) = Ae->"Y, hence the joint density is (after substituting

for I/. = 0 (J2 = 2 A = 1 isfA" ,

[fx,y (x, y) = 2.Jne _:2 e-Y

Now Let Z = ~, and let U = Y
Hence

- ex:; < x < 00, Y > 01

fz,u (z, u) = IJI fx,y (z, u)

Where

r az aZJ [1 -x J
J = det l~i5 gu = det VY 2VY

ax 8Y 0 1

=#
so

IJ-1
1 = JY = VU

Hence, from (1) and substitute X = ZvU and Y = U, we obtain

1 _o2 u
fz u (z, u) = VU r;;;e-4-e-1

£
, 2y 7f

Hence the marginal density

Ifz (z) := .Jooo
fz,u (z, u) du I

Then

(1)

W\J\l~"'\

\IV
1 100

1 -z2 u - 4u
fz (z) = -- u'ie 4 du

2yfif 0

1 100

1 __ (1+ c2 )u d= -- u2e 4 11
2yfif 0

Now Gamma distribution is f (w) = r~:) wCt- 1e->'w, hence if we replace A = 1 + z; and a = ~,
then we have

=1
A ,

1 r (a)' roo ~wCt-1e->'W dw
fz (z) = 2J1f~Jo r (a) /

1 r (a)
~,
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To simplify further,

1 r (~)
3fz (z) = 2..fi (1 + ~) 2

But r (~) = ~, hence

fz(z) = ~ (1+~)-~

Hence the pdf of ~ is

1 ( X2)-~
fx,y (x,Y) = 4: 1 + 4y

To verify this is a pdf, I integrate it from -00 to +00 to see if I get 1:

J

In[16]=
1 1

Integrate[- , {z, -Infinity, Infinity}]
4 ( 2

2 )3/21 +-
/I

Out[16)= 11
--------------

Here is a plot of the distribution

1 ( x
2

) ff=4" l+~

Plot3D[f, {x, -20, 20}, {y, 0, 20}, AxesLabel-+ {"X", "Y", "f(x,y)"}]

1---

20 -----.

o
0.2

f(x.y)

20

l.
~~ "

6

J:

J
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4.7 Quiz 7

Local contents
4.7.1 corrected problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
4.7.2 Graded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

Figure 4.50: Problem 1

part(a)

In the method of moments we formulate the moments of the probability law of the distribution
in which the random variables belong to and equate these moments to the moments obtained
from the sample at hand and solve for the unknown parameters.

µ1 = E(X)

=
∫ ∞

−∞
xf(x) dx

= 1
2σ

∫ ∞

−∞
x e−

|x|
σ dx

But e−
|x|
σ is symmtric around the x = 0 due to absolute x in the power of the exp .(This

assumes σ positive, which is ofcourse true) but it is multiplied by negative x to the left of
y-axis and multiplied by positive x on the right of the y-axis, hence the area of the left of
the y-axis will be equal but negative to the area on the right of the y-axis. Hence the above
integral is zero. Hence µ1 = 0

This moment provides no information. Find the second moment.
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µ2 = E
(
X2)

= 1
2σ

∫ ∞

−∞
x2e−

|x|
σ dx

Due to the symmetry of e−
|x|
σ and also x2 is even and symmetrical around x = 0 , the above

integral is then twice the integral from x = 0· · ·∞ and it becomes

µ2 =
1
σ

∫ ∞

0
x2e−

x
σ dx

Integration by parts gives

µ2 = 2σ2

Hence
σ =

√
µ2

2 (1)

Now find µ2 from the sample itself and substitute for it in the above. From the sample,

µ2 = V ar(sample) +Mean(Sample)

= 1
n

n∑
i=1

(
Xi − X̄

)2 + X̄

Since the mean of the population was found to be zero, we can take the mean of the sample
X̄ = 0

Hence µ2 from the sample becomes

µ2 =
1
n

n∑
i=1

X2
i

Replace the above in (1) we obtain estimate of the population σ as

σ̂ =
√

1
2n

n∑
i=1

X2
i
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part(b)

The MLE of σ is found as follows. Since i.i.d. random variables we write (Where L(σ) mean
lik(σ) and l(σ) means log (lik(σ))

Ln(σ) =
n∏

i=1

f(Xi|σ)

ln(σ) =
n∑

i=1

log f(Xi|σ)

=
n∑

i=1

log
(

1
2σe

−
∣∣Xi

∣∣
σ

)
=

n∑
i=1

(
− log (2σ)− |Xi|

σ

)

Therefore

ln(σ) = −n log (2σ)− 1
σ

n∑
i=1

|Xi|

Now we find the MLE, which is the value of σwhich maximizes the above function.

l′n(σ) = 0
−n

σ
+ 1

σ2

n∑
i=1

|Xi| = 0

−σn+
n∑

i=1

|Xi| = 0

Hence

σ̂ = 1
n

n∑
i=1

|Xi|

The above is the MLE estimate of the parameter σ.

part(c)

The asymptotic distribution of the MLE σ̂ is normal with mean σ and variance 1
nI(σ)where
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I(σ) = −E[l′′n(σ)]

But

l′n(σ) =
∂

∂σ

[
−n log (2σ)− 1

σ

n∑
i=1

|Xi|

]

= −n

σ
+ 1

σ2

n∑
i=1

|Xi|

and
l′′n(σ) =

n

σ2 − 2
σ3

n∑
i=1

|Xi|

Hence

I(σ) = −E

[
n

σ2 − 2
σ3

n∑
i=1

|Xi|

]

= −E
[ n
σ2

]
+ 2

σ3E

[
n∑

i=1

|Xi|

]

= − n

σ2 + 2
σ3

n∑
i=1

E|Xi| (2)

Need to find E|Xi|, since i.i.d. all random variables has the same expected value as X, hence

E|X| = 1
2σ

∫ ∞

−∞
|x| e−

|x|
σ dx

= 1
σ

∫ ∞

0
xe−

x
σ dx

= σ

Therefore from (2)

I(σ) = − n

σ2 + 2
σ3

n∑
i=1

σ

= − n

σ2 + 2n
σ2
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Hence the Fischer information matrix is

I(σ) = n

σ2

Hence MLE σ̂n has an asymptotic distribution ∼ N
(
σ, 1

nI(σ)

)
i.e.

E(σ̂n) = σ

and

V ar(σ̂n) =
1

nI (σ)

= σ2

n2

Figure 4.51: Problem 2

part(a)

The random variable here is the lifetime of a component.

X ∼ λe−λt

In this problem the contribution to the likelihood function of λ comes from only one random
variable. Hence we need to find the pdf of this random observation, which is an order statistics.
It is the minimum random variable among n random variables where n = 5 here.

Since this is an exponential distribution, we know that the distribution of X(1) is given by
(from section 3.7, chapter 3, textbook)

fX(1)(t) = nλe−nλt
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Where in the above, the t is the time of the first failures in each sample taken. (sample size
is 5 in this problem).

Hence
Ln(λ) = nλe−nλt

so for n = 5, the likelihood function is

L(λ) = 5λe−5λt

Hence we need to find the maximum of the above function. Since we have only one r.v., no
need to take logs, use standard method:

L′
n(λ) = ne−nλt − n2tλe−nλt

= 0

Solve for λ̂

1− ntλ̂ = 0

λ̂ = 1
nt

But here n = 5 and time of first failure is t = 100 hence the above becomes ( write T = 100
) then we have

λ̂n=5 =
1
5T = 1

500

part(B)

Since λ̂ = 1
5T where T is a r.v (the first time to fail) which has the distribution 5λe−5λt,

Hence we conclude that the distribution of λ̂ ∼ 1
5

1
5λe−5λt But an exponential distribution is

τe−τt , hence now we see that sampling distribution of λ̂ ∼multiple one over an exponential
distribution with parameter (τ = 5λ).

(When asked to find distribution of some r.v., do we always have to express in terms of
"known" distributions?)
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part(C)

We need to find the standard deviation of the sampling distribution of λ̂ found above.

Since we found that λ̂ ∼ 1
exponential distribution with parameter(τ) and the variance of an exponential

with parameter τ is 1
τ2
, hence variance of λ̂ = τ 2

Hence standard error is the square root of this variance. Hence standard error of the MLE λ̂ = τ = 5λ

Figure 4.52: Problem 3

part (a)

First, I want to say that I am using the following defintion of the Gamma function (using β

instead of λ) in the defintion. Since The data given has units of time and are not rate (i.e.
1/time). So I am using this definition of Gamma PDF

f(t) = 1
β

1
Γ (α)t

α−1e−
t
β

Now to answer part (A).

Yes. The following shows the histogram of the data, and a plot of a Gamma distribution
with the shape parameter α = 1 and scale parameter β set to the average of the data.
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Figure 4.53: histogram of the data
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Part(b)

Using method of moments. We need 2 equations since we have to estimate 2 parameters
α, λ. For Gamma

µ1 =
α

λ
µ2 = V ar(X) + (E(X))2

= α

λ2 +
(α
λ

)2
= α

λ2 (α + 1)

Now from the data itself, calculate the First and Second moments and equate to the above
and solve for α, λ and these will be our estimate. This little code does the above
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Figure 4.54: First and Second moments

Now using the MLE method. For α
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L(α, λ) =
n∏
i

λα

Γ (α)X
α−1
i e−λXi

l(α, λ) =
n∑
i

log λα

Γ (α)X
α−1
i e−λXi

=
n∑
i

log λα

Γ (α) + (α− 1)
n∑
i

logXi − λ
n∑
i

Xi

= nα log λ− n log Γ(α) + (α− 1)
n∑
i

logXi − λ
n∑
i

Xi

Hence we obtain the 2 equations

∂l(α, λ)
∂α

= n log λ− n polyGamma(0, α) +
n∑
i

logXi

∂l(α, λ)
∂λ

= nα
1
λ
−

n∑
i

Xi

From the second equation, set it to zero we obtain

λ̂ = nα̂
n∑
i

Xi

= α̂

X̄

Substitute the above in the first equation and set to zero we obtain

0 = n log
(
α̂

X̄

)
− n

Γ′(α)
Γ (α) +

n∑
i

logXi

0 = n log (α̂)− n log X̄ − n polyGamma(0, α) +
n∑
i

logXi

And solve for α̂. Once we find α̂ we then find also λ̂ = α̂
X̄
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Figure 4.55: result

Part(C)

Now Fit this model again, and compare the MLE fitting to the method of moments fitting
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Figure 4.56: MLE fitting to the method of moments fitting

This plot shows more closely the fitting on top of each others. They are very close so hard
to see the difference other than near the high frequency part.

Figure 4.57: the fitting on top of each others
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The fits above both look reasonable.

Part(d)

Use bootstrap method.

For the method of moments.

Try for n = 500 be the same size. Use the method of moments parameters to generate an n

random variables from Gamma distribution. First time use the parameters estimated from
the data as shown above.

Now, use the sample generated above to estimate the parameters from it again using also the
method of moments. Use these parameters to generate another n random variables. repeat
this process for say N = 5000 and find the variances of the parameters α, λ, and hence we
find the standard error which is the square root of these variances.

Here is the code to do the above and the result

(Last minute update), I am getting large result for standard error from the bootstrap method.
I think I have something wrong. Here is the result I get and the code

For Method of moments, I get standard error for alpha=918 and for lambda=18
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Figure 4.58: result

For MLE I get

Standard error for alpha=1.68697*10^8

Standard error for lambda=60.2585
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Figure 4.59: result

Part (e) and (f)

Run out of time.
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4.7.1 corrected problem 3

Problem 3 Quiz 7 part(a)
by Nasser Abbasi

Part A

Open the gamma file and load the data

Remove@"Global`*"D
Decide on number of bins and make a histogram (see appendix for function I wrote to make probability histogram)

Printed by Mathematica for Students
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In[5]:= nBins = 100;

gz = nmaMakeDensityHistogram@data, nBinsD;
histPlot = GeneralizedBarChart@gz, BarStyle ® White,

ImageSize ® 450, PlotRange ® 88Min@dataD, Max@dataD<, All<,
PlotLabel ® "Histogram of gamma arrival time data"D

Out[7]=

0 100 200 300 400 500 600 700

Histogram of gamma arrival time data

Let me plot a Gamma distribution with the mean arrival time of the data

In[8]:= Β = Mean@dataD
Out[8]= 79.9352

In[9]:= Α = 1;

2  q7.nb
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In[10]:= Plot@PDF@GammaDistribution@Α, ΒD, xD,
8x, 0, Max@dataD<, PlotRange ® All, PlotLabel ® "Gamma@Α,ΒD"D

Out[10]=

100 200 300 400 500 600 700

0.002

0.004

0.006

0.008

0.010

0.012

Gamma@Α,ΒD

From the above we see that a Gamma distribution is possible.

Part B

Start by finding the first and second moments of the Gamma distribution

In[11]:= Clear@x, Α, ΒD
m1 = ExpectedValue@x, GammaDistribution@Α, ΒD, xD

Out[12]= Α Β

In[13]:= m2 = ExpectedValueAx2, GammaDistribution@Α, ΒD, xE

Out[13]= Α H1 + ΑL Β
2

Now find the first and second moments of the data itself

q7.nb  3
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In[14]:= m1ForData = Mean@dataD

Out[14]= 79.9352

In[15]:= m2ForData = Variance@dataD + HMean@dataDL2

Out[15]= 12 702.9

Now solve for Α, Β

In[16]:= sol = First�Solve@8m1 == m1ForData, m2 == m2ForData<, 8Α, Β<D;
ΑByMoments = Α �. sol

Out[17]= 1.01209

In[18]:= ΒByMoments = Β �. sol

Out[18]= 78.98

Hence we find Λ

4  q7.nb
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Now find estimates of the parameters by MLE method and do the same as above

In[19]:= Clear@Α, ΒD
n = Length@dataD

Out[20]= 3935

In[21]:= xBar = Mean@dataD

Out[21]= 79.9352

q7.nb  5
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In[22]:= eq1 = n Log@ΑD - n Log@xBarD - n PolyGamma@0, ΑD + â
i=1

n

Log@dataPiTD

Out[22]= -2206.38 + 3935 Log@ΑD - 3935 PolyGamma@0, ΑD

Solve the above numerically using FindRoot

In[23]:= FindRoot@eq1, 8Α, 1<D;
ΑMLE = Α �. %

Out[24]= 1.02633

Now that we found MLE for alpha, use it to find MLE for Λ

In[25]:= ΛMLE =
ΑMLE

xBar

Out[25]= 0.0128395

In[26]:= ΒMLE =
1

ΛMLE

Out[26]= 77.8844

Conclusion for part B

Make a table to compare the Α, Λ found by the above 2 methods

In[27]:= TableForm@88ΑByMoments, "\t", ΒByMoments<, 8ΑMLE, "\t", ΒMLE<<,
TableHeadings ® 88"Method of moments", "MLE"<, 8"Α", "", "Β"<<D

Out[27]//TableForm=

Α Β

Method of moments 1.01209 78.98

MLE 1.02633 77.8844

Part C

Put the 2 fitting on top of each others to compare

In[28]:= pdfByMomentMethod = Plot@PDF@GammaDistribution@ΑByMoments, ΒByMomentsD, xD,
8x, 0, Max@dataD<, PlotRange ® All, PlotLabel ® "Gamma@Α,ΒD", PlotStyle ® 8Red, Thick<D;

p1 = Show@8histPlot, pdfByMomentMethod<,
PlotLabel ® "Fitting Gamma@Α,ΒD by method of moments on data", ImageSize ® 300D;

6  q7.nb
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In[30]:= pdfByMLE = Plot@PDF@GammaDistribution@ΑMLE, ΒMLED, xD, 8x, 0, Max@dataD<,
PlotRange ® All, PlotLabel ® "Gamma@Α,ΒD", PlotStyle ® 8Red, Thick<D;

p2 = Show@8histPlot, pdfByMLE<, PlotLabel ® "Fitting Gamma@Α,ΒD by method of MLE",

ImageSize ® 300D;
Grid@ 88p2, p1<<D

Out[32]=

0 100 200 300 400 500 600 700

Fitting Gamma@Α,ΒD by method of MLE

0 100 200 300 400 500 600 700

Fitting Gamma@Α,ΒD by method of moments on data

Conclusion for part (C)

This plot shows more closely the fitting on top of each others.They are very close so hard to see the difference other
than near the high frequency part.

In[33]:= pdfByMomentMethod = Plot@PDF@GammaDistribution@ΑByMoments, ΒByMomentsD, xD, 8x, 0, Max@dataD<,
PlotRange ® 880, 300<, All<, PlotLabel ® "Gamma@Α,ΒD", PlotStyle ® 8Dashed, Thick<D;

pdfByMLE = Plot@PDF@GammaDistribution@ΑMLE, 1 � ΛMLED, xD, 8x, 0, Max@dataD<,
PlotRange ® 880, 300<, All<, PlotLabel ® "Gamma@Α,ΛD", PlotStyle ® 8Red, Thick<D;

p2 = Show@8histPlot, pdfByMomentMethod, pdfByMLE<,
PlotLabel ® "Fitting Gamma@Α,ΒD by method of MLE and Moments",

ImageSize ® 300, PlotRange ® 880, 200<, All<D

Out[35]=
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0.000
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0.008
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0.012

Fitting Gamma@Α,ΒD by method of MLE and Moments
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Part (d)

I use bootstrap to compare the standard error of parameters estimated using both the MLE and Method of Moments.
In Bootstrap, we find the estimate of the parameters from the data itself. Then we generate random data from the same
distribution of the same size as the data itself using these original estimates, then we estimate the parameters again
from the generated random data. We repeat this process keeping track each time of the parameters estimated from each
sample. At the end we find the variance and the mean of these parameters and also make histogram to compare the
standard errors from the MLE and the moments method. The method which has smaller standard error will be better.

Write 2 functions which find the parameters estimates using the MLE and the moments method

Remove@"Global`*"D

In[36]:= m1 = ExpectedValue@x, GammaDistribution@Α, ΒD, xD;
m2 = ExpectedValueAx2, GammaDistribution@Α, ΒD, xE;
getMethodOfMomentsParameters@data_D := ModuleA8sol, ΑByMoments, ΒByMoments<,

m1ForData = Mean@dataD;
m2ForData = Variance@dataD + Hm1ForDataL2;

sol = First�Solve@8m1 == m1ForData, m2 == m2ForData<, 8Α, Β<D;
ΑByMoments = Α �. sol;

ΒByMoments = Β �. sol;

8ΑByMoments, ΒByMoments<
E

In[39]:= getMLEParameters@data_D := ModuleB8sol, xBar, ΑMLE, ΛMLE, eq, Α, n<,
xBar = Mean@dataD;
n = Length@dataD;
eq = n Log@ΑD - n Log@xBarD - n PolyGamma@0, ΑD + â

i=1

n

Log@dataPiTD;
sol = FindRoot@eq, 8Α, 1<D;
ΑMLE = Α �. sol;

ΛMLE =
ΑMLE

xBar
;

8ΑMLE, 1 � ΛMLE<
F

8  q7.nb
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In[40]:= getStandardError@numberOfIteration_, data_, sizeOfData_, f_D := Module@8<,
alpha = Table@0, 8i, numberOfIteration<D;
beta = Table@0, 8i, numberOfIteration<D;
8dataAlpha, dataBeta< = f@dataD;
For@i = 1, i £ numberOfIteration, i++,

8
sample = RandomReal@GammaDistribution@dataAlpha, dataBetaD, sizeOfDataD;
8alphaPiT, betaPiT< = f@sampleD;

<
D;
8Sqrt@Variance@alphaDD, Mean@alphaD, Sqrt@Variance@betaDD, Mean@betaD<

D
Now call the above functions to find the standard errors

In[41]:= SeedRandom@01 010 101D;
file = "E:�nabbasi�data�nabbasi_web_Page�my_courses�FULLERTON_COURSES�Fall_2007�math_502

_probability_and_statistics�quiz�quiz7�gamma-arrivals.txt";

data = Flatten@Import@file, "Table"DD;
sizeOfData = Length@dataD; H*data size*L
numberOfIterations = 5000;

In[46]:= resultMoments =

getStandardError@numberOfIterations, data, sizeOfData, getMethodOfMomentsParametersD

Out[46]= 80.0319471, 1.01321, 2.76292, 78.9663<

Now do the same for MLE method

In[47]:= resultMLE = getStandardError@numberOfIterations, data, sizeOfData, getMLEParametersD;

Summary table for part D

In[48]:= TableForm@8 8resultMoments@@1DD, " ",

resultMoments@@2DD, " ", resultMoments@@3DD, " ", resultMoments@@4DD<,
8resultMLE@@1DD, " ", resultMLE@@2DD, " ", resultMLE@@3DD, " ", resultMLE@@4DD<<,

TableHeadings ®

88"Method of moments", "MLE"<, 8"stdHΑL", " ", "MeanHΑL", " ", "stdHΒL", " ", "MeanHΒL"<<D
Out[48]//TableForm=

stdHΑL MeanHΑL stdHΒL MeanHΒL
Method of moments 0.0319471 1.01321 2.76292 78.9663

MLE 0.0203902 1.02741 1.97021 77.8397

q7.nb  9
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Conclusion for part D

We see from the table above that standard error for the MLE method for the parameter Α is a little smaller than that for
the moments method. Also for the Β parameter, the MLE method gives a smaller standard error than the moments
method.

We conclude that the MLE is better than the moments method since its standard error is smaller. The difference is not
too large here in standard error, I was expecting a larger error than this. May be if we have larger data size we can see
this.

Part E

Now we need to find confidence intervals for both Α and Β based on the MLE and the moments methods estimates.
Hence we will need to generate 4 C.I's since we have 2 parameters and 2 methods. I will use the 95% C.I. in all cases.
This C.I. is then a random variable which is said to contain the parameter being estimated with probability .95
There are 3 methods to determine the CI for the method of moments and the MLE. Exact methods, approximation
based on large sample size, and bootstrap methods. We are asked to use the bootstrap method here.

Algorithm

We start first by writing down the algorithm for finding CI (95 %) for MLE or Moments methods. This
algorithm can ofcourse be used for other CI other than 95 % by changing the quantile value, but I used
95 % here for illustration only

1) Load the data from file

2) use the method of MLE to estimate the parameters. Let the estimated parameters be Α`  and Β
`

3) Now, using Α`  and Β
`
 generate 1000 random samples each of size equal to the original data. Use the

distribution Gamma.
4) From each sample generated in step (3) determine using MLE an estimate of the sample parameters
Α,Β call these Α j

* and Β j
* where j is the sample number

5) Sort the parameters sequence Α* and the parameters sequence Β
* from small to large

6) Find the parameter Α* at position 25 and at position 975. Call these Α*
25 and Α*

975 and do the same

for Β
* and Call these Β

*
25 and Β

*
975

7)Let ∆ =Α
*

25-Α
`  and let ∆

-

=Α
*

975-Α
`  , Hence the 95% CI for Α` =(Α

` -∆,Α` -∆

-

)

8)Let ∆ =Β
*

25-Α
`  and let ∆

-

=HΒ
*L975-Α

`  , Hence the 95% CI for Β
`
=(Β

`
-∆,Β

`
-∆

-

)
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Code Implementation

In[49]:= SeedRandom@01 010 101D;
file = "E:�nabbasi�data�nabbasi_web_Page�my_courses�FULLERTON_COURSES�Fall_2007�math_502

_probability_and_statistics�quiz�quiz7�gamma-arrivals.txt";

data = Flatten@Import@file, "Table"DD;
sizeOfData = Length@dataD; H*data size*L
numberOfIterations = 1000;

getCI@data_, f_D := Module@8<,
alphaStar = Table@0, 8i, numberOfIterations<D;
betaStar = Table@0, 8i, numberOfIterations<D;
8alphaHat, betaHat< = f@dataD;
For@i = 1, i £ numberOfIterations, i++,

8
sample = RandomReal@GammaDistribution@alphaHat, betaHatD, sizeOfDataD;
8alphaStarPiT, betaStarPiT< = f@sampleD;

<
D;
alphaStar = Sort@alphaStarD;
betaStar = Sort@betaStarD;
lowerQAlpha = alphaStarP25T;
upperQAlpha = alphaStarP975T;
lowerQBeta = betaStarP25T;
upperQBeta = betaStarP975T;
8alphaHat - HupperQAlpha - alphaHatL, alphaHat - HlowerQAlpha - alphaHatL,
betaHat - HupperQBeta - betaHatL, betaHat - HlowerQBeta - betaHatL<

D
8alphaLow, alphaHigh, betaLow, betaHigh< = getCI@data, getMethodOfMomentsParametersD;
Print@"95% C.I. for Α using Method of moments is H" <>

ToString@alphaLowD <> "," <> ToString@alphaHighD <> "L"D;
Print@"95% C.I. for Β using Method of moments is H" <>

ToString@betaLowD <> "," <> ToString@betaHighD <> "L"D;

95% C.I. for Α using Method of moments is H0.948008,1.07588L
95% C.I. for Β using Method of moments is H73.1629,83.9168L
Now do the same for the MLE

In[58]:= 8alphaLow, alphaHigh, betaLow, betaHigh< = getCI@data, getMLEParametersD;
Print@

"95% C.I. for Α using MLE is H" <> ToString@alphaLowD <> "," <> ToString@alphaHighD <> "L"D;
Print@"95% C.I. for Β using MLE is H" <> ToString@betaLowD <> "," <> ToString@betaHighD <> "L"D;

95% C.I. for Α using MLE is H0.985055,1.06597L
95% C.I. for Β using MLE is H73.9381,81.7684L

Conclusion for part E

q7.nb  11
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Conclusion for part E

The confidence interval using MLE for the same percentage is smaller than that for the method of moments. This is for
both the Α and Β.
This is good. The smaller the CI is for the same confidence the better it is.  This shows that the MLE method of estima-
tion is better than the method of moments (for large sample size as the case here).

Part f

To answer this part, we use MLE to try to fit Poisson distribution on the data. We use MLE to estimate the Λ parameter
for the poisson distribution and plot the pdf over the data histogram to see if the fit is good

We know that the MLE estimate of Λ for a Poisson is X

Remove@"Global`*"D

lambdaHat = Mean@dataD;
dist = PDF@PoissonDistribution@lambdaHatD, tD;
poissonData = Table@8dataPiT, dist �. t -> dataPiT<, 8i, 1, Length@dataD<D;
p1 = ListPlot@poissonData, Joined ® False,

PlotRange ® All, PlotLabel ® "Fitting Poisson on the data"D

100 200 300 400 500 600 700
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0.03

0.04

Fitting Poisson on the data

Lets superimpose the histogram

nBins = 100;

gz = nmaMakeDensityHistogram@data, nBinsD;
histPlot = GeneralizedBarChart@gz, BarStyle ® White, ImageSize ® 450, PlotRange ®

88Min@dataD, Max@dataD<, All<, PlotLabel ® "Histogram of gamma arrival time data"D;

12  q7.nb
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Show@8histPlot, p1<, PlotRange ® AllD

100 200 300 400 500 600 700

0.01
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0.03

0.04

Histogram of gamma arrival time data

Conclusion part f

From the above we see that a Poisson distribution is not a good probability law to describe the data. Poisson fits a
random variable which represents the number of times an event occur in some fixed time. The parameter Λ represents
the average rate at which the event occur per unit time.
The interarrivals times (from the histogram of the data itself) shows that more events occur (particles arrive) which has
the time between them small than when the time is large between them. But in Poisson, the rate should be fixed and not
changing. This explains why Poisson does not give a good fit.
(I really would like to know the correct answer for this one if mine is not correct. Thank you)

Appendix
Contain functions needed

In[1]:= file = "E:�nabbasi�data�nabbasi_web_Page�my_courses�FULLERTON_COURSES�Fall_2007�math_502

_probability_and_statistics�quiz�quiz7�gamma-arrivals.txt";

data = Flatten@Import@file, "Table"DD;
<< "BarCharts`";

nmaMakeDensityHistogram@originalData_, nBins_D :=

Module@8freq, binSize, from, to, scaleFactor, j, a, currentArea<,
to = Max@originalDataD; from = Min@originalDataD;
binSize = Hto - fromL � nBins; freq = BinCounts@originalData, binSizeD;
currentArea = Sum@binSize * freq@@iDD, 8i, nBins<D;
freq = freq � currentArea; a = from;

Table@8a + Hj - 1L * binSize, freq@@jDD, binSize<, 8j, 1, nBins<DD;

q7.nb  13
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Mathemtica notebook for corrected version

Text file of gamma arrivals data

4.7.2 Graded
16/20

QU1Z 7 1\1ATH 502AB

1".

\lm'ember 27. 2007

I
\.../

'----'"

Name (plca"c pri nt ) NASSER ABBASI--------

1. Con"ider Xl" ... X n . eUl i.i.d. "ample from a random \-ariable5 \\'ith den"ity

f(xlu) = ~cxp (_13) .
20' a

(a) Find the mcthod of moment cstimate of u.

(b) Find i\ILE of o'.

(c) Find the a"ymptotic di"tribution of the l\ILE.

PART(A)

In the method of moments we formulate the moments of the probability law of the distribution
in which the random variables belong to and equate these moments to the moments obtained from
the sample at hand and solve for the unknown parameters.

J-Ll = E (X)

= I: xf(x)dx

1 /00 .IE1= - x e- u dx
2(J . -<Xl

But e-~is symmtric around the x = 0 due to absolute x in the power of the exp .(This
assumes (J positive, which is ofcourse true) but it is multiplied by negative x to the left of y-axis
and multiplied by positive x on the right of the y-axis, hence the area of the left of the y-axis
will be equal but negative to the area on the right of the y-axis. Hence the above integral is zero.
Hence IJ-Ll = 0 I

This moment provides no information. Find the second moment.

J-L2 = E (X 2
)

1 1<Xl= _ 2 _Ixl
2(J -<Xl X e --;- dx

.IE1. .
Due to the symmetry of e-" and also x 2

IS even and symmetncal around x = 0, the above
integral is then twice the integral from x = 0 ... 00 and it becomes

11<Xl 2 --"-J-L2=- x e udx
(J 0

Integration by parts gives

/ 11"2=2<7
2

1

1

quiz/quiz7/q7_corrected.nb
quiz/quiz7/gamma-arrivals.txt
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Now find /-l2 from the sample itself and substitute for it in the above. From the sample,

Hence

I£T=VW!

/-l2 = Var(sample) + Mean(Sample)

1~( -)2-= - L.J Xi - X + X
n i=l

(1)
....J

Since the mean of the population was found to be zero, we can take the mean of the sample

Ix=o!
Hence /-l2 from the sample becomes

1 n

/-l2 = - ~X~nL.J ~
i=l

Replace the above in (1) we obtain estimate of the population £T as

v £T=
n

2~LXl
i=l

PART(B)

The MLE of £T is found as follows. Since i.i.d. random variables we write (Where L (£T) mean
lik (£T) and I (£T) means log (lik (£T))

n

L n (£T) = II! (Xil£T)
i=l

n

In (£T) = Llog! (Xil£T)
i=l

= tlog (~e-1¥)·
i=l 2£T

= t (-lOg (2£T) _ IXil)
~=1 £T

Therefore

n

In (£T) = -nlog (2£T) - ~L IXil
i=l

Now we find the MLE, which is the value of £Twhich maximizes the above function.

2

..J •

--/



chapter 4. quizes 380

l~ ((T) = 0

-n 1 n

-+-""'(T (T2 L.J IXil = 0
i=l

n

-(Tn + L: IXiI= 0
i=l

Hence
n

0-= ~L:IXil
i=l

The above is the MLE estimate of the parameter (T.

PART(C)

The asymptotic distribution of the MLE 0- is normal with mean (T and variance nAu) where

I ((T) = -E [l~ ((T)]

But

o [ 1 n ]l~ ((T) = O(T -nlog (2(T) - ~~ IXil

-n 1 L:n

=-+- IXil(T (T2
i=l

and

l~ ((T) = ~ - 23t IXil
(T (T i=l

Hence

[
n 2 n ]

I ((T) = -E - - -""' IXil(T2 (T3 L.J
i=l

= -E [;2] + :3 E [t IXil]

n 2 n

= -- + -""'E IX·I(T2 (T3 L.J l

i=l

(2)

Need to find E lXii, since i.i.d. all random variables has the same expected value as X, hence

1 100

MEIX! = - Ixle- 0" dx
2(T -00

1100

x= - xe-;;dx
(T 0

=(T

3
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Therefore from (2)

2 n

I (eJ) = -~ + -""'eJ
eJ2 eJ3 L...J

i=l

n 2n
=--+-

eJ2 eJ2

Hence the Fischer information matrix is

Hence MLE an has an asymptotic distribution - N ("'~
l.e.

E (an) = eJ

.and

1
Var(an)=nl

eJ2

~

~\)L--

4

-./

-
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.....,

'--"

""---'

2. Suppo~c that certain electronic comp()nent" hayc lifetime" that arc exponentially di,,­
tribllted with parameter A. Fiyc new components arc PlIt on te"t. the fir"t one fails at
100 days. and nu fmther ob"ClTation" ;)re l'

(a) "-hat i" the !.lLE of A.

(b) 'nlat i::- the ",unpling di"tribution of the l\ILE.

(c) ''''hat i" the "tanclard error of the l\lLE?

PART(A)

The random variable here is the lifetime of a component.

X-Ae->.t

In this problem the contribution to the likelihood function of A comes from only one random
variable. Hence we need to find the pdf of this random observation, which is an order statistics.
It is the minimum random variable among n random variables where n = 5 here.

Since this is an exponential distribution, we know that the distribution of XCI) is given by
(from section 3.7, chapter 3, textbook)

fX(l) (t) = nAe-n>.t

Where in the above, the t is the time of the first failures in each sample taken. (sample size is
5 in this problem).

Hence
Ln (A) = nAe-n>.t

so for n = 5, the likelihood function is

[L (A) = 5Ae-5>.t !

Hence we need to find the maximum of the above function. Since we have only one r.v., no
need to take logs, use standard method:

L~ (A) = ne-n>.t - n 2tAe-n>.t

=0

Solve for >.

1 - ntA = a
A 1
A=­

nt

But here n = 5 and time of first failure is t = 100 hence the above bee
then we have

IA 1 __11An=5 = IT - 500

5
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~

~~~vv<»v~
PART (B) I
Since>" = 5~ where T is a r ~he~first-ti.~o fail) which has the distribution 5>.e-5>.t, Hence

we conclude that the di tribution of >. -i 5>.e~5)'t But an exponential distribution is 7e-rt
, hence ....J

\

now we see that sampling 's-tr;' tion of >.. -mul ' Ie one over an exponential distribution with
parameter (7 = 5>') .

.-/ (When asked w find distribution of some r.v.,~ alw,ays bave to express in terms of "known"
distributions?) '{ () 4-....1~ (~'0\1. ~ LJ

PART(C)
We need to find the standard deviation of the sampling distribution of >.. found above,
Since we found that>"- expollential distributi~lI with pmarneter(r) and the variance of an exponential with

parameter 7 is ;2' hence variance of >.. = 7
2

Hence standard error is the square root of this variance.! Hence standard error of the MLE >.. = 7 = 5>.1

/\

-"

'---'"

6
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:3. Do problcm -l3(a-e) of Chapter 8. To obtain t\lLE of 0.. yon may 1I:--(l the function
"fzew" in ?\L\TLAI3. or the fUllction "uniroot" in R.

43. The file ganuna arT' vals contains another set of gamma-ray dara, this one
consisting of the times between arrivals (interarrival times) of 3,935 photons
(Ul1ILS are seconds).

a. Make a histogram of the imerarrivaJ times. Does it appear that a gamma
distribution would be a plausible mudel?

b. Fit the parameters by the method of moments and by maximum Ukelihood.
Ilow do the estimates compare?

c. Plot the two filled gamma densities on top of Ihe histogram. Do the fits look
reasonable?

d. For both ma1Cimumlikelihood and the mcthod of momcnts, use the bootstrap lO

eSlimale the standard errors orthe parameter eSlimates. How do the estimated
tandard errors of the two methods compare?

e. For both maxillllllli likelihood and the mctho<.l of mumenl~, lise Ille boul~trap

to form approximate confidence imervals for the parameters. How do the
confidence intervals for the two methods comparc?

f. Is the interarrival time distribution consistent v, Ith a Poisson process modcl
for the arrival timcs?

PART (A)

Yes. The following shows the histogram of the data, and a plot of a Gamma distribution with
the shape parameter a = 1 and scale parameter f3 set to the average of the data.

7
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In[224]:= I nBins = 100;

gz ::: n.-aHakeDensityHistogra.[ data, nBins] ;

histPl.ot ::: Genera1izedBarChart [92, BarSty1e ~ all..te, I-.ageSi.ze -+ 450,

Pl.otRange {{Hinl data) , Haxl data)}, Al.l.},

Pl.otLabe1. 'Histogram of ga.-a arrival. time data' )

Histogram of gamma arrival time data

h

OUI[226]=

../

~II~.
o 100 200 300

~

4Xl 500 600 700

a::: 1;

In[227J:=

OUI[227]=

In[228]:=

Let me plot a Gamma distribution with the mean arrival time of the data

I"--I~"I H - I
79.9352

1
r-'------------,.

In(229]:= I Pl.ot (PDF IGa_Distribution I a, A), x), {x, 0, Haxldata)}, P1.otRange .... Al.l.,

Pl.otLabel. .... 'Gamma I a,A)' )

Gamma[a,il]

0.012

0.010

0.008

OUI[229]=
0.006

0.004

0.002

100 200 300 om 500 600 700

From the above we see that a Gamma distribution is possible.

PART(B)
Using method of moments. We need 2 equations since we have to estimate 2 parameters a, .A.

For Gamma

8

...J
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'-. .....

'-

0:
f-il = >..
!1-2 = Var(X) + (E(X))2

0: (0:)2
= ,\2 + >..

0:
= A2 (0: + 1)

Now from the data itself, calculate the First and Second moments and equate to the above
and solve for 0:,'\ and these will be our estimate. This little code does the above

9
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Notice, In Mathematica, it uses B as one of the parameters to the Gamma distributions,

which is ~ of the definition in our textbook .
.\.

Start by finding the first and second moments of the Chlllllla dishibution

In[235]'= I Clear [x, Cl, A]

1111 =ExpectedValue [x, GallllllaDistribution [a, 11 A] , x]

OlJti236]=

I~
A

./

In[237]=

OlJti237]=

1112 =ExpectedValue[x2
, GallllllaDistribution[a, l/A], xl

Cf. (1+({)

;\.2

Now find the first and second moments of the data itself

In[238].= IIlIIForData =Mean [data]

Out[238]=

[79.9352

In[239]= 11Il2ForData =Variance [data] + (Mean [data] ) 2

OlJti239]=

[12702.9

Now solye for a., '"

In[279]= I sol =First@Solve[{lIll == 1lI1ForData, 1Il2 == 1Il2ForData}, {Ct, A}];

aByMolllents = Ct I. sol

OlJti280]=

[I. 01209

In[281]'= I.ABYMOlllents =A I. sol

OlJti281]= I0.0126614

10

/.

---/
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Now using the MLE method. For a :

n AO<
L (a A) = II__Xo<-le-.xxi

, . r (a) Z

1

n AO<
l (a A) = "'log __Xo<-le-.xXi

, LJ r (a) 1

1

n AO< n n

= Llog r(a) + (a -1) ~logXi - ALXi
t Z 1

n n

..........

= na log A - n log r (a) + (a - 1) L log Xi - AL Xi
i i

Hence we obtain the 2 equations

8l(a,A) ~
-- = nlogA - n polyGamma(O, a) + LJIOgXi

t

n

8l (a, A) = na..!:. - LXi
8A A i

From the second equation, set it to zero we obtain

.x = n& &
n =-

LXi X
i

Substitute the above in the first equation and set to zero we obtain

(&) r'(a) n
0= nlog -= - n-- + "'logX·

X r(a) ~ 1
t

n

0= nlog (&) - nlogX - n polyGamma(O, a) + L log Xi
1

And solve for &. Once we find & we then find also .x = ~

11
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'=

This code below does the above.

Now find estimates of the parameters by l\n.E method and do the same as abon
..../

In[299]=

Out[300]=

I

Clear [a, A]

n = Length [data]

3935

In[301]= I
Out[301]=

I
xBar = Mean [data]

79.9352

In[302]=
•

eql = nLog[a] - nLog[xBar] -nPolyGalllllla[O, a] + L:LOg[data[i]l]

:1.=1

Out[302]=

-2206.38 + 3935 Log [0.] - 3935 PolyGamma[O, .:t]

Soln the abo\'e llumellcally using FilldRoot

FindRoot[eql, {a, I}];

at1LE=a/. %

In[303]=

Out[304]=

11. 02633

......J

Now that we fOIUl<Il\n.E for alpha. use it to find l\ll.E fOf .I.

xBar

aMLE
AMLE ='0[305)0 I

Out[305]= I0.0128395

l\Iake a table to compare the a . .'I. found by the abo\'e l methods

In[306]= I TableForm[{{aByMolllent:;, AByMolllent:;}, {aMLE, AMLE}} ,

TableHeading:; .. {{"Method of moment:;", "MLE"} , {"a", "A"}}]

Out[306]1f1ableForm=

.:;t. _l
Method of moments 11.01209 0.0126614
MLE 1.02633 0.0128395

---./

12
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PART(C)
Now Fit this model again, and compare the MLE fitting to the method of moments fitting

.AByMoments

pdfByMo/llentMethod =Plot [PDF [Ga/ll/llaDistribution [ctByMo/llents, 13] , x] ,

{x, 0, Hax[data]}, PlotRange ... AII, PlotLabel ... "Ga/llma[a,A]",

PlotStyle ... {Red, Thick}];

pI =Show [{hi stPlot, pdfByMo/llentHethod},

PlotLabel ... "Fitting Gam/lla by lIIethod of IIIO/llents on data", IlIIageSize ... 300];

In[350]=
I

13 .. ; (.to J'la athematica convention of the Gamma functi~n.)

In[352]= I pdfByMLE =Plot [PDF [Ga/ll/llaDistribution [ctHLE, I / AMLE] , x], {x, 0, Max [data]},

PlotRange ... All, PlotLabel ... "Gamma [ct,A]", PlotStyle ... {Red, Thick}];

p2 =Show[{histPlot, pdfByMLE}, PlotLabel ... "Fitting Galll/lla by lIIethod of MLE",

I lIIageSi ze ... 300] ;

Grid[ {{p2, pI}}]

Out[354]=

Fdtlllg Gamma by method of l\ll.E FitfUl;! Gamma by method of moments on data

o 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700

This plot shows more closely the fitting on top of each others. They are very close so hard to
see the difference other than near the high frequency part.

13
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In(554)= I pdfByMomentMethod =Plot [PDF [GammaDistribution [etByt-loments, ,8], x],

{x, 0, Max [data] }, P lotRange -+ {{O, 300}, All}, P lotLabel -+ "Gamma [et,.A] " ,

PlotStyle -+ {Dashed, Thick}] ;

pdfByMLE =Plot [PDF [GaJllJllaDistribution [aMLE, 1/ At-ILE] , x], {x, 0, Max [data]},

P lotRange -+ {{O, 300}, All}, P lotLabel -+ "Gamma [et,.A] ", P lotStyle -+ {Red, Thick}] ;

p2 =Show[{histPlot, pdfByHomentMethod, pdfByMLE},

P lotLabel -+ "Fi tting Gamma by method of t1LE and Moments", ImageSi ze -+ 300,

PlotRange -+ {{O, 150}, All}]

Out[556]=

FitlJng Gallulla by method of 1JLE and lIomellt~

20 40 60 80 100 120 140

The fits above both look reasonable.

PART(D)
Use bootstrap method. ----J

For the method of moments.
Try for n = 500 be the same size. Use the method of moments parameters to generate an n

random variables from Gamma distribution. First time use the parameters estimated from the
data as shown above.

Now, use the sample generated above to estimate the parameters from it again using also the
method of moments. Use these parameters to generate another n random variables. repeat this
process for say N = 5000 and find the variances of the parameters a, A, and hence we find the
standard error which is the square root of these variances.

Here is the code to do the above and the result
(Last minute update), I am getting large result for standard error from the bootstrap method.

I think I have something wrong. Here is the result I get and the code

For Method of moments, I get standard error for alpha=918 and for lambda=18

--...../

14
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"'-./

'-......-

Part (d)

In[1]:= I Remove["Global *"]

SeedRandom[Ol01010l];

m1 : ExpectedValue [x, GallllllaDistribution [a, ,6], x];

1112 : ExpectedVal ue [x~, GallllllaDi stribution [a, ,6] , x];

getMethodOfMolllentsParallleters[data_] :: Module[{sol, aByMoments, ,6ByMoments},

1II1ForData : Mean [data] ;

m2ForData : Variance [data] + (mlForData) 2;

sol: First@Solve[{ml :: 1II1ForData, 1112 :: 1112ForData}, {a, ,6}];

aByMoments : a /. sol;

,6ByMoments : ,6 /. sol;

{aByMoments, ,6ByMoments}

In[6]:= I file:

"E./nabbasi/data/nabbasi_web_Page/my_courses/FULLERTON_COURSES/Fall_2007/math_502

_probability_and_statistics/quiz/quiz7/gamma-arrivals.txt";

data: Flatten [Import [file, "Table"])·

n: 500; I[--le size*)

nIter: 5000; :ations*)

alpha: Table [0, {i, nIter}];

beta: Table [0, {i, nIter}];

{alpha[1D, beta(1)} : getMethodOfMomentsParallleters [data];

For [i : 2, i ~ nIter, i ++,

{

sample: RandolllReal [GallllllaDistribution [alphali - 1), beta Ii - 1)] , n];

{alphal[iD I beta[iD} : getMethodOfMolllentsParallleters [sample];

}

]

Print ["Standard error for alpha:" I Sqrt [Variance [alpha]]]

Print ["Standard error for lalllbda:", Sqrt [Variance [1/ beta]]]

Standard error for alpha:918.308

Standard error for lambda:18.7966

For MLE I get
Standard error for alpha=1.68697*10~8

Standard error for lambda=60.2585

15

1
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Now do the S:lme for MLE method

In[1]:= I Remove ["Global *"]
...J

SeedRandolll[OlOlOlOl];

getMLEParallleters[clata_] :=ModUle[{SOl, xBar, aMLE, .:.un.E, eq, a, n},

xBar : Hean [clat:a] ;

n = Length [clat:a] ;

•
eq: n Log[a] - n Log[xBar] - n PolyGalllllla [0, el] + I: Log [clata(i)] ;

:1.=1

sol = FindRoot[eq, {a, I}];

a!'ILE = a /. sol;

aMLE
.:.un.E =

xBar

{ aHLE, .:.un.E}

]
Removt>::lInnsm: Thele ale no symbols matchh1g "Global' ,.".»

In[4]:= I file =
"E:/nabbasi/data/nabbasi_web_Page/my_courses/FULLERTON_COURSES/Fall_2007/math_S02

_probability_and_statistics/quiz/quiz7/gamllla-arrivals.txt";

data = Flatten [Import [file, "Table"]];

n=500; "1,, 'llze.

nIter = 5000; :atl-:>ns*)

alpha Ie Table [0, {i, nIter}];

lambda = Table [0, {i, nIter}];

-..J)

{alpha(l), laMbda(l)} = geUfLEParallleters [data];

For [i = 2, i ~ nIter, i ++,

{

sample: RandomReal [GaMlllaDistribution [alpha(i -lD, laMbdaD:i - 1]1] , n];

{alphaD:i]l, lambda(iD} : getHLEParameters [salllple];

}

]

Print ["Standard error for alpha=", Sqrt [Variance [alpha]]]

Print ["Standard error for lambda:", Sqrt [Variance [lalllbda]]]

--/

o-J
C~Y'-ecf)

,

~

V\. 0+W V4e-(){YOyS

-:c~ oJ. ~ 8.\~

,,\D~ e-- t>-k: U ~) M ~ c-I
~ ~~O<~

t'\ C>--- 5~eY

Part (e) and (f)
sorry, run out of time.

--~
16
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4.8 Quizes key solution
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5.1 My cheat sheet

..z~ L.-.o 0

~./aL<J

/&\.1 1 .

_ / £(x)If~Y.

XVl-JAX
Vl/IAf A

-VrJ

.;?V) ::::-

I

!
1 \1.1 z

.2?n -= ~ -' nA1.x

VVCffX vA

7-

1 (uJ)-t Z10 )
~ --n. -I ......1-~'

def(J.e X.ll\' \~ X= =-t:..2.. LJ~ t.. '""- "J \ ,
~(tl=?()(<'~) :-,?\'C:."~y) =- '?( -JX<::'~<&

F)(lx) -= r'(-If:;z~""2.) ~:J/ ~~r;-) ,
--I;:

__...J
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~- <.< ~ q- . Vw(X) = ~[ex EUc»~ _ E()( "-) _ (~ I X)) 1...

.#J V'u(xj :: J X~x) L fC¥) dot.

Y::::- a.- -t- t:J X g VH ('() -= b 2. Vq ( ).

IPC1Sj(.~cl ~ h~cl V~~~ ;a·v.
1=-jr!: ;0 v. 8;I"\~ ,I L-<- ~'cP ~

'(=~ -rX1.-+---- + XVl. .; wtv..... ~. ~ tJ~· ?>V(ty{lj)~n-p(l-P).

ee:> '.;

~v~~ CoiN '1/ '-1) -=- f f 0-flA) LJ -P~ feX
J
1) dx.cf7J

-9V -'\i

-/... n . .'1- ~ f~ ~J;hhJIF ~Jc.~ -Iv ~ Q--to~e:-~h~ .,/- J~ v· CJ)"'l.L-n I/<) f?

v~~L-~-f- ~~. E(\() c(cC'-(/X))
,

IF ast:-~ -/ZJ Fr'he! Exped ~~ ~ VAl d! ~hK- I1d'tl tt'Vl~
~.) ~ I--se. ~?-f.
£x~~ . Fi",,01 £ (VX) k;L-r X~ ?/J4SU)A 1>-.,

r- jrw+ td @(y.)-={X / e X-ta;.-./ BCt) ~../Ax ~-ry~ :
f) { 'I.- (Y/A J -r (x-;4) 8~x) -t- (r--;t1xl ff1'; [ --I- ,

!::tv.-~ E CJCX)) ~ E( r ·
1-- ax) A; /A-ge ~~ . ) '6J u/(x) / oilY)

1'[ s~

.------------------~-=-
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--

If
E(S

if R.v.

E peer. dV~,;
IF- ~sf- ~ F2.v. ~ do

£( ~..;. p{XJt)

//== L/I?-.- ~~;......L-' ~ ~. v· ~

\(:: rL-+- Z h~7~ ~ E( 'r):- q... .2 b--t' C(X:,.)
~--p~ c.....vf'C~· E:x "1J
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...

~r' I~ l,hc.b ~ C4. j2,£!: 'v«~

tv..:.,,- t;?- K, v; ~ "-~ .rD a.. :t4... 1.1. v·
l.<),,~ h-.-v';t, "t!CO' ... ... f (If-4.. t...,. .

8. -~C. I
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/6 e;P~4#"6 r~ ~£JPl-h''''I.~ :c~ /~ t>,,1 C:f)v v,. (t.:,

~.J~ '- -Pf?~ 'tT V'---~~ cL.- /-'J:,~ •

li)(~)
---~- ",-

(1J
j r·

r, it i t;3
5}.W;"V
,1 ~ ...L'
J t-~.
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On solving this problem: Let U1, U2, U3 be independent random variables uniform on [0,1].
Find the probability of the roots of the quadratic U1x2 + U2x+ U3 are real

Small investigation into problem 11
Nasser Abbasi, 9/26/07

The problem :
Let U1, U2, U3 be independent random variables uniform on [0,1]. Find the probability of the roots of the 

quadratic  U1 x2 + U2 x + U3 are real
Answer:
Roots are real when discriminant is ³ 0

In[25]:= eq = U1 x2 + U2 x + U3;

expr = First�Solve@eq � 0, xD;
f = First�Cases@expr, Sqrt@any_D ® any, InfinityD H*Pull out the expression under the sqrt *L

Out[27]= U22 - 4 U1 U3
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Hence we want to find  P(U22 - 4 U1 U3 >0)

This is the VOLUME between the above surface and between a cube of side 1. i.e. a cube of volume 1.

As an initial look, One way to view this is to look at the constant surface contours in 3 D space. We can 
look at the constant contour surfaces in which the function U22 - 4 U1 U3 is zero. And then look at the 
surface in which this function is on the positive side and then on the negative side of it. This will give 
us an idea where the volume of interest lies in relation to the zero contour surface. 

In[28]:= ContourPlot3D@f , 8U1, 0, 1<, 8U2, 0, 1<, 8U3, 0, 1<, AxesLabel ® 8"u1", "u2", "u3"<,
Contours ® 80, -.5, .5<, ContourStyle ® 8Yellow, Red, Green<D

Out[28]=
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We see from the above that surfaces below the yellow surface (the GREEN) are positive, and those 
above it (RED) are negative.  We can get a better view of the volume by getting a plot of the region 
where such a function is POSITIVE. Next we draw the solid region where this function is POSITIVE

In[29]:= RegionPlot3D@f > 0, 8U1, 0, 1<, 8U2, 0, 1<, 8U3, 0, 1<,
AxesLabel ® 8"u1", "u2", "u3"<, PlotStyle ® Directive@Yellow, Opacity@0.5DD, Mesh ® NoneD

Out[29]=
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In[30]:= RegionPlot3D@f > 0, 8U1, 0, 1<, 8U2, 0, 1<, 8U3, 0, 1<,
AxesLabel ® 8"u1", "u2", "u3"<, PlotStyle ® Directive@YellowD, Mesh ® NoneD

Out[30]=
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So the solid volume in the  above represents the numerical value of the probability we are looking for.  
It is hard for me now to see the regions of integration analytically, but there is a simulation run which 
gives an approximate value for the probability we need

In[31]:= n = 3 000 000; SeedRandom@010 101D;
u1 = Table@RandomReal@80, 1<D, 8i, n<D;
u2 = Table@RandomReal@80, 1<D, 8i, n<D;
u3 = Table@RandomReal@80, 1<D, 8i, n<D;
r = SelectAu22 - 4 u1 u3, ð ³ 0 &E;
Print@"Probability is ", N@Length@rD �nDD

Probability is 0.253976
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